【題目】已知直線軸于點(diǎn),交軸于點(diǎn), 的中點(diǎn), 為射線上一點(diǎn),連,將點(diǎn)順時(shí)針旋轉(zhuǎn)得線段,則的最小值為__________.

【答案】

【解析】根據(jù)題意,畫(huà)出圖形(如圖所示),直線軸于點(diǎn),交軸于點(diǎn), 中點(diǎn),可得A(4,0),B(0,2),C(21),所以OB=2,0A=4.過(guò)點(diǎn)EEMx軸于點(diǎn)M,過(guò)點(diǎn)ENCx,過(guò)點(diǎn)EENNC于點(diǎn)N,因?yàn)?/span>BDDEBOD=AMD=90°,即可證得∠ODB=MED,再由BD=DE,根據(jù)AAS即可判定△ODB≌△MED,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得OD=EM,OB=DM=2,設(shè)OD=EM=m,則OM=2+m,由點(diǎn)CAB的中點(diǎn)可得OH=HM=2,即可求得HM=m,所以EN=m.又因C2,1),EM=NH=m,可得NC=m-1.RtCNE中,根據(jù)勾股定理可得,當(dāng) 時(shí), 最小,最小為,所以EC最小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式的規(guī)律,解答下列問(wèn)題:

(1)按此規(guī)律,第④個(gè)等式為_________;第個(gè)等式為_______;(用含的代數(shù)式表示,為正整數(shù))

(2)按此規(guī)律,計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一棟居民樓AB的高為16米,遠(yuǎn)處有一棟商務(wù)樓CD,小明在居民樓的樓底A處測(cè)得商務(wù)樓頂D處的仰角為,又在商務(wù)樓的樓頂D處測(cè)得居民樓的樓頂B處的俯角為.其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)的正下方,且A、C兩點(diǎn)在同一水平線上,求商務(wù)樓CD的高度.

(參考數(shù)據(jù): , .結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批發(fā)市場(chǎng)對(duì)外批發(fā)某品脾的玩具,其價(jià)格與件數(shù)關(guān)系如圖所示,請(qǐng)你根據(jù)圖中描述判斷:下列說(shuō)法中錯(cuò)誤的是( )

A. 當(dāng)件數(shù)不超過(guò)30件時(shí),每件價(jià)格為60

B. 當(dāng)件數(shù)在3060之間時(shí),每件價(jià)格隨件數(shù)增加而減少

C. 當(dāng)件數(shù)為50件時(shí),每件價(jià)格為55

D. 當(dāng)件數(shù)不少于60件時(shí),每件價(jià)格都是45

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)1,0)和點(diǎn),與軸交于點(diǎn),對(duì)稱(chēng)軸為直線=1.

(1)求點(diǎn)的坐標(biāo)(用含的代數(shù)式表示)

(2)連接,若△的面積為6,求此拋物線的解析式;

(3)在(2)的條件下,點(diǎn)軸正半軸上的一點(diǎn),點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱(chēng),當(dāng)△為直角三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AOCO,BODO,且∠ABC+ADC180°

1)求證:四邊形ABCD是矩形;

2)若∠ADF:∠FDC32,DFAC,求∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ACB=90°,B=30°,AD平分CAB.

(1)求CAD的度數(shù);

(2)延長(zhǎng)AC至E,使CE=AC,求證:DA=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,ABC是等邊三角形,P是三角形內(nèi)一點(diǎn),PDABPEBC,PFAC,若ABC的周長(zhǎng)為18,則PD+PE+PF=( 。

A. 18B. 9

C. 6D. 條件不夠,不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.

(1)畫(huà)出ABC向上平移6個(gè)單位得到的A1B1C1;

(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫(huà)出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫(xiě)出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案