【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上,如圖2,當(dāng)點P為AB的中點時,判斷△ACE的形狀,并說明理由;
(3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過程中△ACE面積的最小值為4,請直接寫出a的值.
【答案】(1)見解析;(2)△ACE是直角三角形,理由見解析;(3)a=1.
【解析】
(1)根據(jù)正方形的性質(zhì)和全等三角形的判定定理證明△APE≌△CFE,根據(jù)全等三角形的性質(zhì)證明結(jié)論;
(2)根據(jù)正方形的性質(zhì)、等腰直角三角形的性質(zhì)解答;
(3)連接BD、AC交于點O.點E的運(yùn)動軌跡是以B為圓心,a為半徑的圓,則當(dāng)點E在對角線BD上時,△ACE的面積最小, 根據(jù)×AC×OE=4,得到OE=,即可求出BE=2–=,進(jìn)而求出 a=1.
(1)如圖1中,
∵四邊形ABCD和四邊形BPEF是正方形,
∴AB=BC,BP=BF,∴AP=CF,
在△APE和△CFE中,,
∴△APE≌△CFE,
∴EA=EC;
(2)△ACE是直角三角形,
理由如下:如圖2中,
∵P為AB的中點,∴PA=PB,
∵PB=PE,∴PA=PE,∴∠PAE=45°,
又∵∠BAC=45°,
∴∠CAE=90°,即△ACE是直角三角形;
(3)如圖3,連接BD、AC交于點O.
∵點E的運(yùn)動軌跡是以B為圓心,a為半徑的圓,
∴當(dāng)點E在對角線BD上時,△ACE的面積最小,
∵×AC×OE=4,∴OE=,
∵BE=2–=,∴a=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC>AB>AC.甲、乙兩人想在BC上取一點P,使得∠APC=2∠ABC,其作法如下:
(甲)作AB的中垂線,交BC于P點,則P即為所求;
(乙)以B為圓心,AB長為半徑畫弧,交BC于P點,則P即為所求.
對于兩人的作法,下列判斷何者正確?( 。
A. 兩人皆正確B. 兩人皆錯誤C. 甲正確,乙錯誤D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周老師為了了解學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半年的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類A:優(yōu);B:良;C:中;D:差.依據(jù)調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,周老師一共調(diào)查了______名學(xué)生;
(2)將統(tǒng)計圖補(bǔ)充完整;
(3)為了共同進(jìn)步,周老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一對一”幫扶,請用列表法或畫樹形圖的方法求所選的兩位同學(xué)恰好是兩位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( 。
A. ①②③④ B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與x軸交于A、B兩點(點A在x軸的負(fù)半軸),與y軸交于點C. 拋物線的對稱軸交拋物線于點D,交x軸于點E,點P是線段DE上一動點(點P不與DE兩端點重合),連接PC、PO.
(1) 求拋物線的解析式和對稱軸;
(2) 求∠DAO的度數(shù)和△PCO的面積;
(3) 在圖1中,連接PA,點Q 是PA 的中點.過點P作PF⊥AD于點F,連接QE、QF、EF得到圖2.試探究: 是否存在點P,使得 ,若存在,請求點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的屋頂,是建筑中經(jīng)常采用的結(jié)構(gòu)形式.在如圖所示的等腰三角形屋頂ABC中,AB=AC,測得BC=20米,∠C=41°,求頂點A到BC邊的距離是多少米?(結(jié)果精確到0.1米.參考數(shù)據(jù):sin41°≈0.656,cos41°≈0.755,tan41°≈0.869.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com