精英家教網 > 初中數學 > 題目詳情
如圖所示,在△ABC中,∠ACB=90°,CD⊥AB于點D,點E在AC上,CE=BC,過E點作AC的垂線,交CD的延長線于點F.
求證:AB=FC.
見解析
找到AB、FC所在的三角形,然后證明該三角形全等即可。由同角的余角相等可得∠A=∠F,又CB=CE,∠ACB=∠CEF,則△CEF≌△ACB,所以AB=FC
∵∠A=∠F,CB=CE,∠ACB=∠CEF,
∴△CEF≌△ACB(ASA),
則AB=FC
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,點D是線段BC的中點,分別以點B,C為圓心,BC長為半徑畫弧,兩弧相交于點A,連接AB,AC,AD,點E為AD上一點,連接BE,CE.
(1)求證:BE=CE;
(2)以點E為圓心,ED長為半徑畫弧,分別交BE,CE于點F,G.若BC=4,∠EBD=30°,求圖中陰影部分(扇形)的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,點B、F、C、E在同一直線上,BF=CE,AB⊥BE,DE⊥BE,垂足分別為B、E,聯結AC、DF,∠A=∠D.
求證:AB=DE.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(1)如圖,點A、B、C、D在同一條直線上,BE∥DF,∠A=∠F,AB=FD.求證:AE=FC.
(2)如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=,求腰AB的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示,在平面上有一半徑為1 cm的圓定點A,OA="4" cm.以點A為旋轉中心,使圓O分別順時針旋轉90°,逆時針旋轉60°,得到圓B和圓C,作出這兩個圓.
(1)試問圓B或圓C的圓心與圓O的圓心O的距離是多少?
(2)試問圓B和圓C的圓心的距離是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

把一條12個單位長度的線段分成三條線段,其中一條線段長為4個單位長度,另兩條線段長都是單位長度的整數倍.
(1)不同分法得到的三條線段能組成多少個不全等的三角形?用尺規(guī)作出這些三角形(用給定的單位長度,不寫作法,保留作圖痕跡);
(2)求出(1)中所作三角形外接圓的周長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于點E,若AD=2,BC=5,則邊CD的長是
A.B.C.3D.4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,過正方形ABCD的頂點B作直線l,過點A,C作l的垂線,垂足分別為點E,F.若AE=2,CF=6,則AB的長度為        

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列長度的三條線段,能組成等腰三角形的是(   )
A.1,1,2B.2,2,5C.3,3,5D.3,4,5

查看答案和解析>>

同步練習冊答案