(2003•內(nèi)蒙古)邊長(zhǎng)為2,2,2,4的梯形的面積為( )
A.3
B.
C.6
D.
【答案】分析:由已知可得到這是一個(gè)上底和腰相等且底角為60°的等腰梯形,從而利用三角函數(shù)求得高的長(zhǎng),再利用面積公式即可求得梯形的面積.
解答:解:根據(jù)所給的數(shù)據(jù),可以發(fā)現(xiàn)這是一個(gè)上底和腰相等且底角是60°的等腰梯形.根據(jù)30°的直角三角形的性質(zhì),可得該梯形的高是.則梯形的面積是(2+4)×=3.故選B.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等腰梯形的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•內(nèi)蒙古)已知關(guān)于x的二次函數(shù)y=-x2+(2m+3)x+4-m2的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與y軸的交點(diǎn)C在原點(diǎn)的上方,若A、B兩點(diǎn)到原點(diǎn)的距離AO、OB滿足4(OB-AO)=3AO•OB.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求這個(gè)二次函數(shù)圖象的頂點(diǎn)M的坐標(biāo),并畫出函數(shù)圖象的略圖;
(3)求△AMC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:解答題

(2003•內(nèi)蒙古)已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象相交于A和B兩點(diǎn),點(diǎn)A的橫坐標(biāo)是3,點(diǎn)B的縱坐標(biāo)是-3.(1)求一次函數(shù)的解析式;(2)當(dāng)x為何值時(shí),一次函數(shù)的函數(shù)值小于零.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•內(nèi)蒙古)已知關(guān)于x的二次函數(shù)y=-x2+(2m+3)x+4-m2的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與y軸的交點(diǎn)C在原點(diǎn)的上方,若A、B兩點(diǎn)到原點(diǎn)的距離AO、OB滿足4(OB-AO)=3AO•OB.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求這個(gè)二次函數(shù)圖象的頂點(diǎn)M的坐標(biāo),并畫出函數(shù)圖象的略圖;
(3)求△AMC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•內(nèi)蒙古)已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象相交于A和B兩點(diǎn),點(diǎn)A的橫坐標(biāo)是3,點(diǎn)B的縱坐標(biāo)是-3.(1)求一次函數(shù)的解析式;(2)當(dāng)x為何值時(shí),一次函數(shù)的函數(shù)值小于零.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(01)(解析版) 題型:選擇題

(2003•內(nèi)蒙古)某校四個(gè)科技興趣小組在“科技活動(dòng)周”上交的作品數(shù)分別如下:10,10,x,8,已知這組數(shù)據(jù)的眾數(shù)與平均數(shù)相等,則這組數(shù)據(jù)的中位數(shù)是( )
A.8
B.9
C.10
D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案