下列各恒等變形中,是因式分解的是

[    ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

綜合題
閱讀下列材料:
配方法是初中數(shù)學(xué)中經(jīng)常用到的一個(gè)重要方法,學(xué)好配方法對(duì)我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是將某一個(gè)多項(xiàng)式變形為一個(gè)完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據(jù)以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

綜合題
閱讀下列材料:
配方法是初中數(shù)學(xué)中經(jīng)常用到的一個(gè)重要方法,學(xué)好配方法對(duì)我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是將某一個(gè)多項(xiàng)式變形為一個(gè)完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據(jù)以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

綜合題
閱讀下列材料:
配方法是初中數(shù)學(xué)中經(jīng)常用到的一個(gè)重要方法,學(xué)好配方法對(duì)我們學(xué)習(xí)數(shù)學(xué)有很大的幫助,所謂配方就是將某一個(gè)多項(xiàng)式變形為一個(gè)完全平方式,變形一定要是恒等的,例如解方程x2-4x+4=0,則(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.則有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0則有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根據(jù)以上材料解答下列各題:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三邊,且a2+b2+c2-ac-ab-bc=0,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案