【題目】從圖中的二次函數(shù)y=ax2+bx+c圖象中,觀察得出了下面的五條信息:
①b>0 ②c=0;③函數(shù)的最小值為﹣3;④a﹣b+c>0;⑤當x1<x2<2時,y1>y2.
(1)你認為其中正確的有哪幾個?(寫出編號)
(2)根據正確的條件請求出函數(shù)解析式.
【答案】②③④⑤; .
【解析】
(1)根據開口方向①;根據拋物線與y軸的交點判斷②;根據拋物線頂點坐標及開口方向判斷③;觀察當x<0時,圖象是否在x軸上方,判斷④;在0<x1<x2<2時,函數(shù)的增減性判斷⑤.
(2)利用頂點式求出二次函數(shù)的解析式即可.
根據圖象可知:
①∵該函數(shù)圖象的開口向上,∴,∴,(此時,異號)故此選項錯誤;
②時,可,故此選項正確;
③利用函數(shù)頂點坐標,函數(shù)的最小值為,故此選項正確;
④根據圖象知,當時,圖象是在軸上方,∴;即,故此選項正確;
⑤當時函數(shù)為減函數(shù),時,,故此選項正確.
故正確的有:②③④⑤,
∵函數(shù)的頂點坐標為:,
∴二次函數(shù)的解析式為:,
將代入求出即可:
,
∴函數(shù)解析式為:.
科目:初中數(shù)學 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點A、點B分別是y軸、x軸上兩個動點,直角邊AC交x軸于點D,斜邊BC交y軸于點E;
(1)如圖(1),已知C點的橫坐標為-1,直接寫出點A的坐標;
(2)如圖(2), 當?shù)妊?/span>Rt△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點A在x軸上,且A(-4,0),點B在y軸的正半軸上運動時,分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結CD交y軸于點P,問當點B在y軸的正半軸上運動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.
(1)求四邊形OEBF的面積;
(2)求證:OGBD=EF2;
(3)在旋轉過程中,當△BEF與△COF的面積之和最大時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,點D是弧BC的中點,PD切⊙O于點D.
(1)求證:DP⊥AP;
(2)若PD=,PC=1,求圖中陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,在邊上,在線段上,,是等邊三角形,邊交邊于點,邊交邊于點.
求證:;
當為何值時,以為圓心,以為半徑的圓與相切?
設,五邊形的面積為,求與之間的函數(shù)解析式(要求寫出自變量的取值范圍);當為何值時,有最大值?并求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D,E,F分別在邊BC,AC,AB上,且BD=CE,DC=BF,連結DE,EF,DF,∠1=60°
(1)求證:△BDF≌△CED.
(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE∥OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2﹣8n+16+|n﹣2m|=0.
(1)求A、B兩點的坐標;
(2)若點D為AB中點,求OE的長;
(3)如圖2,若點P(x,﹣2x+4)為直線AB在x軸下方的一點,點E是y軸的正半軸上一動點,以E為直角頂點作等腰直角△PEF,使點F在第一象限,且F點的橫、縱坐標始終相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩人在玩轉盤游戲時,準備了兩個可以自由轉動的轉盤A,B,每個轉盤被分成面積相等的幾個扇形,并在每一個扇形內標上數(shù)字.游戲規(guī)則:同時轉動兩個轉盤,當轉盤停止后,指針所指區(qū)域的數(shù)字之和為0時,甲獲勝;數(shù)字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉一次,直到指針指向某一區(qū)域為止.
(1)用畫樹狀圖或列表法求乙獲勝的概率;
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com