【題目】如圖,在正方形ABCD中,點(diǎn)G在邊AB上(不與點(diǎn)A,B重合),連接DG,作CE⊥DG于點(diǎn)E,AF⊥DG于點(diǎn)F,連接AE,CF.
(1)求證:DE=AF;
(2)若設(shè),求的值.
【答案】(1)證明見解析;(2).
【解析】
(1) 證,即可得DE=AF.
(2)先證△AFG∽△CED,可得,根據(jù)正方形的性質(zhì)等量代換得出, 根據(jù)三角函數(shù)的定義求出tanα,tanβ的比例式,直接化簡(jiǎn)求解即可.
(1)∵四邊形ABCD是正方形
∴AD=CD,∠ADC=90°
∵CE⊥DG,AF⊥DG
∴∠AFD=∠DEC=90°
∴∠ADF+∠CDE=90°,∠DCE+∠DEC=90°
∴∠ADF=∠DCE
在中,
∴(AAS)
∴DE=AF
(2)正方形ABCD中,AB∥CD,
∴∠AGF=∠CDE.
∵∠CED=∠AFG=90°,
∴△AFG∽△CED.
∴.
∵ ,又AB=CD,∴.
∴.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(1,2),B(3,2),連接AB.若對(duì)于平面內(nèi)一點(diǎn)P,線段AB上都存在點(diǎn)Q,使得PQ≤2,則稱點(diǎn)P是線段AB的“影子”.
(1)在點(diǎn)C(0,1),D(2,),E(4,5)中,線段AB的”影子”是 .
(2)若點(diǎn)M(m,n)在直線y=-x+2上,且不是線段AB的“影子”,求m的取值范圍.
(3)若直線y=x+b上存在線段AB的“影子”,求b的取值范圍以及“影子”構(gòu)成的區(qū)域面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,點(diǎn)O是AC的中點(diǎn),點(diǎn)P是AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,O,C重合).過點(diǎn)A,點(diǎn)C作直線BP的垂線,垂足分別為點(diǎn)E和點(diǎn)F,連接OE,OF.
(1)如圖1,請(qǐng)直接寫出線段OE與OF的數(shù)量關(guān)系;
(2)如圖2,當(dāng)∠ABC=90°時(shí),請(qǐng)判斷線段OE與OF之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由
(3)若|CF﹣AE|=2,EF=2,當(dāng)△POF為等腰三角形時(shí),請(qǐng)直接寫出線段OP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,D為BC上一點(diǎn),過點(diǎn)D作DE⊥AB于E.
(1)連接AD,取AD中點(diǎn)F,連接CF,CE,FE,判斷△CEF的形狀并說明理由
(2)若BD=CD,將△BED繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)n°(0<n<180),當(dāng)點(diǎn)B落在Rt△ABC的邊上時(shí),求出n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2 ,0)和(3 ,0)之間,對(duì)稱軸是x=1.對(duì)于下列結(jié)論:① ab<0;② 2a+b=0;③ 3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤ 當(dāng)-1<x<3時(shí),y>0. 其中正確結(jié)論的個(gè)數(shù)為( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,剪兩張對(duì)邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩張長(zhǎng)為5,寬為1的矩形紙條交叉,讓兩個(gè)矩形對(duì)角線交點(diǎn)重合,且使重疊部分成為一個(gè)菱形.當(dāng)兩張紙條垂直時(shí),菱形周長(zhǎng)的最小值是4,把一個(gè)矩形繞兩個(gè)矩形重合的對(duì)角線交點(diǎn)旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長(zhǎng)的最大值是( )
A. 8B. 10C. 10.4D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC是直徑,弦BD=BA,EB⊥DC,交DC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE是⊙O的切線;
(2)當(dāng)sin∠BCE=,AB=3時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】田忌賽馬的故事為我們所熟知.小亮與小齊學(xué)習(xí)概率初步知識(shí)后設(shè)計(jì)了如下游戲:小亮手中有方塊l0、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取一張牌進(jìn)行比較,數(shù)字大的為本“局”獲勝,每次取的牌不能放回.
(1)若每人隨機(jī)取手中的一張牌進(jìn)行比賽,求小齊本“局”獲勝的概率;
(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序?yàn)橄瘸?,再出8,最后出l0時(shí),小齊隨機(jī)出牌應(yīng)對(duì),求小齊本次比賽獲勝的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com