【題目】如圖所示,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(4,0),以點(diǎn)A為圓心,4為半徑的圓與x軸交于O,B兩點(diǎn),OC為弦,∠AOC=60°,Px軸上的一動(dòng)點(diǎn),連接CP.

(1)直接寫(xiě)出OC=___________;

(2)如圖1,當(dāng)CP與⊙A相切時(shí),求PO的長(zhǎng);

(3)如圖2,當(dāng)點(diǎn)P在直徑OB上時(shí),CP的延長(zhǎng)線與⊙A相交于點(diǎn)Q,問(wèn)當(dāng)PO為何值時(shí),△OCQ是等腰三角形?

【答案】(1)4;(2)4 (3)PO22+2

【解析】

(1)根據(jù)已知條件證明△AOC是等邊三角形,由此即可求解;(2)根據(jù)切線的性質(zhì)可得∠ACP=90°,在直角三角形APC中,即可得∠APC= 30°;有已知A點(diǎn)的坐標(biāo)可得AC的長(zhǎng),即可求得PA的長(zhǎng),再由PO=PA-OA得出OP的值即可;(3)OC=OQCQ=OQ兩種情況求PO得值即可.

(1)∵∠AOC=60°,AO=AC,

∴△AOC是等邊三角形,

OC=OA=4

(2)CP與⊙A相切,

∴∠ACP=90°,

∴∠APC=90°﹣OAC=30°;

又∵A(4,0),

AC=AO=4,

PA=2AC=8,

PO=PA﹣OA=8﹣4=4.

(3)①如圖,過(guò)點(diǎn)CCP1OB,垂足為P1,延長(zhǎng)CP1交⊙AQ1;

OA是半徑,

,

OC=OQ1,

∴△OCQ1是等腰三角形;

又∵△AOC是等邊三角形,

P1O=OA=2;

②如圖,過(guò)AADOC,垂足為D,延長(zhǎng)DA交⊙AQ2,CQ2x軸交于P2

A是圓心,

DQ2OC的垂直平分線,

CQ2=OQ2,

∴△OCQ2是等腰三角形;

過(guò)點(diǎn)Q2Q2Ex軸于E,

RtAQ2E中,

∵∠Q2AE=OAD=OAC=30°,

Q2E=AQ2=2,AE=2,

∴點(diǎn)Q2的坐標(biāo)(4+,﹣2);

RtCOP1中,

P1O=2,AOC=60°,

,

C點(diǎn)坐標(biāo)(2,);

設(shè)直線CQ2的關(guān)系式為y=kx+b,則

,

解得

y=﹣x+2+2;

當(dāng)y=0時(shí),x=2+2,

P2O=2+2span>,

即:PO22+2時(shí),OCQ是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)ykx經(jīng)過(guò)點(diǎn)A,點(diǎn)A在第四象限,過(guò)點(diǎn)AAHx軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3

1)求正比例函數(shù)的表達(dá)式;

2)在x軸上能否找到一點(diǎn)M,使△AOM是等腰三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD,BE分別是∠BAC,∠ABC的角平分線.

1)若∠C70°,∠BAC60°,則∠BED的度數(shù)是 ;若∠BED50°,則∠C的度數(shù)是

2)探究∠BED與∠C的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( 。

A. B. C. 1 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】基本圖形:在Rt△中,,邊上一點(diǎn)(不與點(diǎn),重合),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到.

探索:(1)連接,如圖①,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;

(2)連接,如圖②,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;

聯(lián)想:(3)如圖③,在四邊形中,.若,,則的長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知的直徑,延長(zhǎng),使,過(guò)的切線,為切點(diǎn),連接、.求:

的長(zhǎng);

的值;

的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當(dāng)α為多少度時(shí),ABDC?

②當(dāng)旋轉(zhuǎn)到圖③所示位置時(shí),α為多少度?

③連接BD,當(dāng)0°<α≤45°時(shí),探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,5)、B(1,0)、C(4,0).

(1)畫(huà)出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1,并寫(xiě)出A1點(diǎn)的坐標(biāo);

(2)y軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,并求出點(diǎn)P的坐標(biāo)及△PAB的周長(zhǎng)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底米,下底米,上下底相距米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為米.

用含的式子表示橫向甬道的面積;

當(dāng)三條甬道的面積是梯形面積的八分之一時(shí),求甬道的寬;

根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過(guò)米.如果修建甬道的總費(fèi)用(萬(wàn)元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是,花壇其余部分的綠化費(fèi)用為每平方米萬(wàn)元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案