【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點(diǎn),AC與DE交于P點(diǎn),以直線BC為x軸,點(diǎn)E為原點(diǎn)建立直角坐標(biāo)系.
(1)求△ABC與△DEF的頂點(diǎn)坐標(biāo);
(2)判斷△PEC的形狀;
(3)求△PEC的面積.
【答案】(1) A(0,1),B(-1,0),C(1,0),D(1,1),E(0,0),F(2,0);(2)△PEC是等腰直角三角形;(3)S△PEC=.
【解析】整體分析:
(1)根據(jù)勾股定理和平移的性質(zhì)求出△ABC與△DEF的頂點(diǎn)到點(diǎn)E的距離或到點(diǎn)A的距離;(2)根據(jù)平移的性質(zhì)得DE∥AB,即可判斷△PEC的形狀;(3)△PEC的面積等于兩條直角邊乘積的一半.
解:(1)連接AE,CD.
∵△ABC是等腰直角三角形,E是BC的中點(diǎn),
∴AE⊥BC,∴AE2+CE2=2CE2=AC2,∴CE=AC.
∵△DEF是由△ABC平移得到的,
∴CE=AE=BE=CF=CD=AC=×=1,EF=2CE=2.
∴A(0,1),B(-1,0),C(1,0),D(1,1),E(0,0),F(2,0).
(2)根據(jù)平移的性質(zhì),可知DE∥AB,
∴∠PEC=∠B=45°,∠EPC=∠A=90°,
∴△PEC是等腰直角三角形.
(3)S△PEC=PC·PE=PC2=×CE2=.
所以S△PEC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+2的圖象與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,m).
(1)求反比例函數(shù)y=(k≠0)的表達(dá)式;
(2)若P是y軸上一點(diǎn),且滿足△ABP的面積為6,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=∠BDC.
(1)求證:△ABD∽△DCB;
(2)若AB=12,AD=8,CD=15,求DB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購買籃球、排球共20個(gè),購買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購買3個(gè)籃球的費(fèi)用與購買5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請(qǐng)你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y1=﹣x+m與y軸交于點(diǎn)A(0,6),直線l2:y=kx+1分別與x軸交于點(diǎn)B(﹣2,0),與y軸交于點(diǎn)C,兩條直線交點(diǎn)記為D.
(1)m= ,k= ;
(2)求兩直線交點(diǎn)D的坐標(biāo);
(3)根據(jù)圖象直接寫出y1<y2時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ABC中,∠C=90°,AB的垂直平分線交AC于點(diǎn)D,連接BD.若AC=2,BC=1,求△BCD的周長(zhǎng)為;
(2)O為正方形ABCD的中心,E為CD邊上一點(diǎn),F(xiàn)為AD邊上一點(diǎn),且△EDF的周長(zhǎng)等于AD的長(zhǎng).
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
②在圖3中補(bǔ)全圖形,求∠EOF的度數(shù);
③若 , 求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在一條不完整的數(shù)軸上一動(dòng)點(diǎn)A向左移動(dòng)4個(gè)單位長(zhǎng)度到達(dá)點(diǎn)B,再向右移動(dòng)7個(gè)單位長(zhǎng)度到達(dá)點(diǎn)C.
(1)若點(diǎn)A表示的數(shù)為0,求點(diǎn)B、點(diǎn)C表示的數(shù);
(2)若點(diǎn)C表示的數(shù)為5,求點(diǎn)B、點(diǎn)A表示的數(shù);
(3)如果點(diǎn)A、C表示的數(shù)互為相反數(shù),求點(diǎn)B表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)﹣22×7﹣(﹣3)×6+5;
(2)化簡(jiǎn)3(m﹣2n+2)﹣(﹣2m﹣3n)﹣1;
(3)解方程:2(2x+1)﹣(10x+1)=6;
(4)=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn)P(1,0),點(diǎn)P第1次向上跳動(dòng)1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn)P2(―1,1),第3次向上跳動(dòng)1個(gè)單位,第4次向右跳動(dòng)3個(gè)單位,第5次又向上跳動(dòng)1個(gè)單位,第6次向左跳動(dòng)4個(gè)單位,……,依此規(guī)律跳動(dòng)下去,點(diǎn)P第100次跳動(dòng)至點(diǎn)P100的坐標(biāo)是 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com