【題目】已知△ABC中,AB=4,BC=5,AC的長是一元二次方程x2﹣15x+54=0的一個根.
(1)求AC的長;
(2)在AC上找一點D,連接BD,使△ABD∽△ACB;
(3)以AC為一邊作一個三角形ACM,求出sin∠AMC的值.(所作三角形自己設(shè)計)
【答案】(1)AC=6;(2)見解析;當(dāng)AD=時,△ABD∽△ACB;(3)sin∠AMC=.
【解析】
(1)解一元二次方程x2-15x+54=0,可得x1=6,x2=9,再根據(jù)三角形的三邊關(guān)系,即可得到AC的范圍,進(jìn)而得出AC的長;
(2)依據(jù)相似三角形的對應(yīng)邊成比例,即可得到AD的長,即可得出點D的位置;
(3)以AC為一邊作一個等邊三角形ACM,即可得到sin∠AMC的值,答案不唯一.
(1)解一元二次方程x2﹣15x+54=0,可得
x1=6,x2=9,
∵5﹣4<AC<5+4,
∴1<AC<9,
∵AC的長是一元二次方程x2﹣15x+54=0的一個根,
∴AC=6;
(2)如圖所示,當(dāng)△ABD∽△ACB時,
=,即AB2=AD×AC,
∴16=AD×6,
∴AD=,
∴當(dāng)AD=時,△ABD∽△ACB;
(3)如圖所示,以AC為一邊作一個等邊三角形ACM,則∠AMC=60°,
∴sin∠AMC=sin60°=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當(dāng)點P在線段AB上時,求證:△APQ∽△ABC;
(2)當(dāng)△PQB為等腰三角形時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由半圓和長方形構(gòu)成,長方形的長BC為8m,寬AB為1m,該隧道內(nèi)設(shè)雙向行駛的車道(共有2條車道),若現(xiàn)有一輛貨運卡車高4m,寬2.3m。則這輛貨運卡車能否通過該隧道?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點是等腰直角三角形斜邊上的中點,,是上一點,連結(jié).
(1)如圖1,若點在線段上,過點作,垂足為,交于點,求證:;
(2)如圖2,若點在延長線上,,垂足為,交的延長線于點,其它條件不變,則結(jié)論“”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司現(xiàn)有A,B,C,D四種型號的甲品牌電腦和E、F兩種型號的乙品牌電腦.實驗中學(xué)要從甲、乙兩種品牌電腦中各選購一種型號的電腦.
(1)寫出所有選購方案;
(2)如果(1)中各種選購方案被選中的可能性相等,那么A型電腦被選中的概率是多少?A型與E型號被同時選中的概率是多少?
(3)現(xiàn)知實驗中學(xué)購買甲、乙兩種品牌電腦共10臺(價格如圖所示),恰好用了4萬元人民幣,其中甲品牌電腦為A型號電腦,那么購買A型號電腦有幾臺?.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(-5,1),B(-1,1),C(-4,3).
(1)若△A1B1C1與△ABC關(guān)于y軸對稱,點A,B,C的對應(yīng)點分別為A1,B1,C1,請畫出△A1B1C1并寫出A1,B1,C1的坐標(biāo);
(2)若點P為平面內(nèi)不與C重合的一點,△PAB與△ABC全等,請寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以點P為端點豎直向下的一條射線PN,以它為對稱軸向左右對稱擺動形成了射線PN1,PN2,我們規(guī)定:∠N1PN2為點P的“搖擺角”,射線PN搖擺掃過的區(qū)域叫作點P的“搖擺區(qū)域”(含PN1,PN2).
在平面直角坐標(biāo)系xOy中,點P(2,3).
(1)當(dāng)點P的搖擺角為60°時,請判斷O(0,0)、A(1,2)、B(2,1)、C(2+,0)屬于點P的搖擺區(qū)域內(nèi)的點是 (填寫字母即可);
(2)如果過點D(1,0),點E(5,0)的線段完全在點P的搖擺區(qū)域內(nèi),那么點P的搖擺角至少為 °;
(3)⊙W的圓心坐標(biāo)為(a,0),半徑為1,如果⊙W上的所有點都在點P的搖擺角為60°時的搖擺區(qū)域內(nèi),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,合肥市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)請把折線統(tǒng)計圖補充完整;
(2)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(3)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天早上小華步行上學(xué),他離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開.為了不遲到,小華跑步到了學(xué)校,則小華離學(xué)校的距離y與時間t之間的函數(shù)關(guān)系的大致圖象是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com