精英家教網(wǎng)如圖,若將三個(gè)同樣大小的正方形的一個(gè)頂點(diǎn)重合放置,則∠1的度數(shù)為( 。
A、15°B、20°C、25°D、30°
分析:根據(jù)∠1=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度數(shù)從而求解.
解答:精英家教網(wǎng)解:∵∠BOD=90°-∠AOB=90°-30°=60°
∠EOC=90°-∠EOF=90°-40°=50°
又∵∠1=∠BOD+EOC-∠BOE
∴∠1=60°+50°-90°=20°
故選:B.
點(diǎn)評(píng):本題主要考查了角度的計(jì)算,正確理解∠1=∠BOD+EOC-∠BOE這一關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知:多項(xiàng)式M=2a2-a+1,N=a2-2a.試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個(gè)頂
點(diǎn)為長方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形的這一邊的對(duì)邊上.
①這樣的長方形可以畫
3
3
個(gè);
②所畫的長方形中哪個(gè)周長最小?為什么?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

問題提出

我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類比應(yīng)用

1.已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .試比較M與N的大。

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個(gè)頂

點(diǎn)為長方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形的這一邊的對(duì)邊上。                     

     ①這樣的長方形可以畫       個(gè);

②所畫的長方形中哪個(gè)周長最。繛槭裁?

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

問題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大小.

解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
【小題1】已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a.試比較M與N的大。
【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個(gè)頂
點(diǎn)為長方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形的這一邊的對(duì)邊上。                     
①這樣的長方形可以畫       個(gè);
②所畫的長方形中哪個(gè)周長最小?為什么?

拓展延伸                                                                                               
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰市長涇片九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題


【問題提出】我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【類比應(yīng)用】(1)已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .
試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,
使得△ABC的兩個(gè)頂點(diǎn)為長方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落
在長方形的這一邊的對(duì)邊上。
 
①這樣的長方形可以畫     個(gè);
②所畫的長方形中哪個(gè)周長最。繛槭裁?
【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇鹽城鹽都區(qū)九年級(jí)下學(xué)期期中質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版). 題型:解答題

問題提出

我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類比應(yīng)用

1.已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .試比較M與N的大。

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個(gè)頂

點(diǎn)為長方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形的這一邊的對(duì)邊上。                     

      ①這樣的長方形可以畫        個(gè);

②所畫的長方形中哪個(gè)周長最。繛槭裁?

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案