【題目】如圖,∠A=90°,E為BC上一點(diǎn),A點(diǎn)和E點(diǎn)關(guān)于BD對(duì)稱,B點(diǎn)、C點(diǎn)關(guān)于DE對(duì)稱,求∠ABC和∠C的度數(shù).
【答案】解:∵A點(diǎn)和E點(diǎn)關(guān)于BD對(duì)稱,
∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.
又B點(diǎn)、C點(diǎn)關(guān)于DE對(duì)稱,
∴∠DBE=∠C,∠ABC=2∠C.
∵∠A=90°,
∴∠ABC+∠C=2∠C+∠C=3∠C=90°.
∴∠C=30°
∴∠ABC=2∠C=60°.
【解析】依據(jù)軸對(duì)稱圖形的性質(zhì)可得到∠ABD=∠EBD,然后依據(jù)B點(diǎn)、C點(diǎn)關(guān)于DE對(duì)稱可得∠DBE=∠BCD,結(jié)合上式可得:∠ABC=2∠BCD,且∠ABC+∠BCD=90°,進(jìn)而求得∠ABC、∠C的值.
【考點(diǎn)精析】關(guān)于本題考查的軸對(duì)稱的性質(zhì),需要了解關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形;如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線;兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】情境觀察:
(1)如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點(diǎn)F. ①寫出圖1中所有的全等三角形;
②線段AF與線段CE的數(shù)量關(guān)系是 .
(2)如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點(diǎn)E. 求證:AE=2CD.
(3)如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足為E,DE與BC交于點(diǎn)F.求證:DF=2CE. 要求:請(qǐng)你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為 ;
(3)將△ABC繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°,則點(diǎn)C走過的路徑長(zhǎng)為 ;
(4)在x軸上找一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市將大、中、小學(xué)生的視力進(jìn)行抽樣分析,其中大、中、小學(xué)生的人數(shù)比為2:3:5,若已知中學(xué)生被抽到的人數(shù)為150人,則應(yīng)抽取的樣本容量等于( )
(A)1500 (B)1000 (C)150 (D)500
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MAN=120°,AC平分∠MAN,點(diǎn)B、D分別在AN、AM上.
(1)如圖1,若∠ABC=∠ADC=90°,請(qǐng)你探索線段AD、AB、AC之間的數(shù)量關(guān)系,并證明之;
(2)如圖2,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點(diǎn)E,交BD于點(diǎn)F,連接CF.若∠A=60°,∠ABD=24°,則∠ACF的度數(shù)為( )
A.48°
B.36°
C.30°
D.24°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解剛生產(chǎn)的10 000臺(tái)電視機(jī)的壽命情況,從中抽取100臺(tái)電視機(jī)進(jìn)行實(shí)驗(yàn),這個(gè)問題中的樣本容量是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com