【題目】在Rt△ABC中,∠ACB=90°,在斜邊AB上分別截取AD=AC,BE=BC,DE=6,
點(diǎn)O是△CDE的外心,如圖所示,則點(diǎn)O到△ABC的三邊的距離之和是

【答案】9
【解析】解:由題意點(diǎn)O是EC、CD垂直平分線的交點(diǎn),
∵AD=AC,BE=BC,
∴EC的垂直平分線經(jīng)過B且平分∠B,CD的垂直平分線經(jīng)過A且平分∠A,
∴O是△ABC的內(nèi)心,
則r= (AC+BC﹣AB)= (AD+BE﹣AB)= DE=3,
∴點(diǎn)O到△ABC的三邊的距離之和是3r=9,
故答案為9.
根據(jù)線段的垂直平分線的判定可知EC的垂直平分線經(jīng)過B且平分∠B,CD的垂直平分線經(jīng)過A且平分∠A,根據(jù)三角形的內(nèi)心到三角形三邊的距離相等可得O是△ABC的內(nèi)心,則r= (AC+BC﹣AB)= (AD+BE﹣AB)= DE,所以點(diǎn)O到△ABC的三邊的距離之和是3r。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)代數(shù)式,老師要求任意取一個(gè)x的值后求出代數(shù)式的值.圓圓發(fā)現(xiàn),大家所求得的代數(shù)式的值都大于等于0,即x=-3時(shí)代數(shù)式的最小值是0.利用這個(gè)發(fā)現(xiàn),圓圓試著寫出另外一些結(jié)論:①在x=-3時(shí),代數(shù)式(x3)22的最小值為2;②在a=-b時(shí),代數(shù)式(ab)2m的最小值為m;③在c=-d時(shí),代數(shù)式-(cd)2n的最大值為n;④在時(shí),代數(shù)式的最大值為29.其中正確的為( )

A. ①②③B. ①③C. ①④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn).圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:

(1)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系,并結(jié)合圖2加以證明;
(2)三角板繞點(diǎn)P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長);若不能,請(qǐng)說明理由;
(3)若將三角板的直角頂點(diǎn)放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖4加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的爸爸騎著摩托車帶著小明在公路上勻速行駛,小明每隔一段時(shí)間看到的里程碑上的數(shù)如下:1200時(shí)是一個(gè)兩位數(shù),數(shù)字之和為71300時(shí)十位與個(gè)位數(shù)字與1200是所看到的正好互換了;1400時(shí)比1200時(shí)看到的兩位數(shù)中間多出一個(gè)0.如果設(shè)小明在1200看到的數(shù)的十位數(shù)字是x,個(gè)位數(shù)字是y,根據(jù)題意可列方程組為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個(gè)多邊形的內(nèi)角和是它的外角和的 3 倍,求這個(gè)多邊形的邊數(shù).

(2)如圖,點(diǎn)F ABC 的邊 BC 延長線上一點(diǎn).DFAB,A=30°,F=40°,求∠ACF 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張去書店購買圖書,看好書店有A,B,C三種不同價(jià)格的圖書,分別是A種圖書每本1元,B種圖書每本2元,C種圖書每本5元.

1)若小張同時(shí)購買A,C兩種不同圖書的6本,用去18元,求購買兩種圖書的本數(shù);

2)若小張同時(shí)購買兩種不同的圖書10本,用去18元,請(qǐng)你設(shè)計(jì)他的購書方案;

3)若小張同時(shí)購進(jìn)A,BC三種不同圖書10本,用去18元,請(qǐng)你設(shè)計(jì)他的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖 1,在四邊形 ABCD ,ABDC,E BC 中點(diǎn), AE BAD 的平分線試探究 AB,AD,DC 之間的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論,無需證明

(2)如圖 2,在四邊形ABCD ,ABDC,AF DC 的延長線交于點(diǎn)F,E BC 中點(diǎn)AE BAF 的平分線試探究AB,AFCF 之間的數(shù)量關(guān)系,證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧 的中點(diǎn),點(diǎn)D是優(yōu)弧 上一點(diǎn),且∠D=30下列四個(gè)結(jié)論:①OA⊥BC;②BC= cm;③cos∠AOB= ;④四邊形ABOC是菱形.其中正確結(jié)論的序號(hào)是( )

A.①③
B.①②③④
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在橫線上完成下面的證明,并在括號(hào)內(nèi)注明理由.

已知:如圖,∠ABC+BGD180°,∠1=∠2

求證:EFDB

證明:∵∠ABC+BGD180°,(已知)

   .(   

∴∠1=∠3.(   

又∵∠1=∠2,(已知)

   .(   

EFDB.(   

查看答案和解析>>

同步練習(xí)冊(cè)答案