【題目】初一(1)班針對“你最喜愛的課外活動項(xiàng)目”對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.
男、女生所選項(xiàng)目人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 男生(人數(shù)) | 女生(人數(shù)) |
機(jī)器人 | 7 | 9 |
3D打印 | m | 4 |
航模 | 2 | 2 |
其他 | 5 | n |
根據(jù)以上信息解決下列問題:
(1)m= ,n= ;
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為 °;
(3)從選航模項(xiàng)目的4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.
【答案】(1)8,3;(2)144;(3).
【解析】
(1)由航模的人數(shù)和其所占的百分比可求出總?cè)藬?shù),進(jìn)而可求出3D打印的人數(shù),則m的值可求出,從而n的值也可求出;
(2)由機(jī)器人項(xiàng)目的人數(shù)所占總?cè)藬?shù)的百分比即可求出所對應(yīng)扇形的圓心角度數(shù);
(3)應(yīng)用列表法的方法,求出恰好選到1名男生和1名女生的概率是多少即可.
解:(1)由兩種統(tǒng)計(jì)表可知:總?cè)藬?shù)=4÷10%=40人,
∵3D打印項(xiàng)目占30%,
∴3D打印項(xiàng)目人數(shù)=40×30%=12人,
∴m=12﹣4=8,
∴n=40﹣16﹣12﹣4﹣5=3,
故答案為:8,3;
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)=×360°=144°,
故答案為:144;
(3)列表得:
男1 | 男2 | 女1 | 女2 | |
男1 | ﹣﹣ | 男2男1 | 女1男1 | 女2男1 |
男2 | 男1男2 | ﹣﹣ | 女1男2 | 女2男2 |
女1 | 男1女1 | 男2女1 | ﹣﹣ | 女2女1 |
女2 | 男1女2 | 男2女2 | 女1女2 | ﹣﹣ |
由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中/span>“1名男生、1名女生”有8種可能.
所以P( 1名男生、1名女生)=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的邊CD上運(yùn)動,AC與BE相交于點(diǎn)F
(1)如圖1,當(dāng)點(diǎn)E運(yùn)動到DC的中點(diǎn)時(shí),求△ABF與四邊形ADEF的面積之比;
(2)如圖2,當(dāng)點(diǎn)E運(yùn)動到CE:ED=2:1時(shí),求△ABF與四邊形ADEF的面積之比;
(3)當(dāng)點(diǎn)E運(yùn)動到CE:ED=n:1時(shí)(n是正整數(shù)),猜想△ABF與四邊形ADEF的面積之比(只寫結(jié)果,不要求寫過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,點(diǎn)Q從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動,點(diǎn)P從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動.
(1)如果Q、P分別從A、B兩點(diǎn)出發(fā),那么幾秒后,△PBQ的面積等于8cm2?
(2)在(1)中,△PBQ的面積能否等于10cm2?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OF是∠MON的平分線,點(diǎn)A在射線OM上,P,Q是直線ON上的兩動點(diǎn),點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點(diǎn)B、點(diǎn)C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點(diǎn)都在射線ON上時(shí),請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點(diǎn)都在射線ON的反向延長線上時(shí),線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點(diǎn)都在射線ON上移動時(shí),k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問題;
(2)存在.證明方法類似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,由此即可解決問題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,∴k=0.5.
點(diǎn)睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考?碱}型.
【題型】解答題
【結(jié)束】
28
【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+x+c上的一動點(diǎn),過點(diǎn)P作PE⊥x軸,垂足為E,交直線l于點(diǎn)F.
(1)試求該拋物線表達(dá)式;
(2)如圖(1),若點(diǎn)P在第三象限,四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖(2),過點(diǎn)P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問當(dāng)P點(diǎn)橫坐標(biāo)為何值時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線y=﹣x2+bx+c與x軸,y軸分別相交于點(diǎn)A(﹣1,0),B(0,3)兩點(diǎn),其頂點(diǎn)為D,
(1)求該拋物線的解析式;
(2)若拋物線與x軸另一個交點(diǎn)為E,求四邊形ABDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),.
求一次函數(shù)的表達(dá)式;
若該商場獲得利潤為元,試寫出利潤與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點(diǎn) E,交⊙O于點(diǎn)D,連接BD.
(1)求證:∠BAD=∠CBD;
(2)若∠AEB=125°,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com