【題目】如圖,直線y=k1x+1與雙曲線y=相交于P(1,m),Q(-2,-1)兩點.
(1)求m的值;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上三點,且x1<x2<0<x3,請直接說明y1,y2,y3的大小關系;
(3)觀察圖象,請直接寫出不等式k1x+1>的解集.
【答案】(1) 2;(2) y2<y1<y3;(3)-2<x<0或x>1.
【解析】試題分析:(1)把把Q(-2,-1)代入反比例函數(shù)的解析式求得函數(shù)解析式,然后把P代入求得m的值;
(2)根據(jù)反比例函數(shù)的圖象,根據(jù)自變量的相對位置,結合圖象即可確定;
(3)不等式k1x+1>的解集就是對相同的x的值,一次函數(shù)的圖象在上邊的部分x的范圍.
試題解析:(1)∵雙曲線y=經過點Q(-2,-1),∴k2=-2×(-1)=2,
∴雙曲線的解析式為y=
又∵點P(1,m)在雙曲線y=上,∴m==2.
(2)由A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線y=上的三點,且x1<x2<0<x3根據(jù)反比例函數(shù)的性質可得y2<y1<y3.
(3)由圖象可知不等式k1x+1>的解集為-2<x<0或x>1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.
(1)求該拋物線的解析式;
(2)當動點P運動到何處時,BP2=BDBC;
(3)當△PCD的面積最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A,B兩點的縱坐標分別為7和1,直線AB與y軸所夾銳角為60°.
(1)求線段AB的長;
(2)求經過A,B兩點的反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3),雙曲線y= (x>0)的圖象經過BC上的點D與AB交于點E,連接DE,若E是AB的中點.
(1)求點D的坐標;
(2)點F是OC邊上一點,若△FBC和△DEB相似,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點E、F分別是AB、BC邊的中點,連接AF、CE交于點M,連接BM并延長交CD于點N,連接DE交AF于點P,則結論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤S△EPM= S梯形ABCD , 正確的個數(shù)有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點B,C的切線,且∠BDC=120°,連接AC.
(1)求∠A的度數(shù);
(2)若點D到BC的距離為2,那么⊙O的半徑是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com