【題目】化簡求值:已知:(x﹣3)2 =0,求3x2y﹣[2xy2﹣2(xy﹣ )+3xy]+5xy2的值.
【答案】解:∵(x﹣3)2 =0,
∴x﹣3=0,|y |=0,
解得x=3,y=﹣ ;
3x2y﹣[2xy2﹣2(xy﹣ )+3xy]+5xy2
=3x2y﹣2xy2+2xy﹣2× ﹣3xy+5xy2
=3x2y﹣2xy2+2xy﹣3x2y﹣3xy+5xy2
=3xy2﹣xy
=3×3× ﹣3×(﹣ )
=1+1
=2.
∴3x2y﹣[2xy2﹣2(xy﹣ )+3xy]+5xy2的值是2.
【解析】先根據(jù)平方的非負(fù)性和絕對值的非負(fù)性求出x、y的值;然后把原式依次去小括號、中括號、合并同類項化簡,再把x、y的值代入計算.
【考點精析】認(rèn)真審題,首先需要了解代數(shù)式求值(求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入),還要掌握整式加減法則(整式的運算法則:(1)去括號;(2)合并同類項)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對教師試卷講評課中學(xué)生參與的深度和廣度進行評價,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中生的參與情況,繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中所給的信息解答下列問題:
(1)這次評價中,一共抽查了名學(xué)生;
(2)請將條形統(tǒng)計圖補充完整;
(3)如果全市有16萬初中學(xué)生,那么在試卷講評課中,“獨立思考”的學(xué)生約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個條件中,由哪兩個條件可以判定△ABC是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC與Rt△DEF的位置如圖所示,其中AC=2,BC=6,DE=3,∠D=30°,其中,Rt△DEF沿射線CB以每秒1個單位長度的速度向右運動,射線DE、DF與射線AB分別交于N、M兩點,運動時間為t,當(dāng)點E運動到與點B重合時停止運動.
(1)當(dāng)Rt△DEF在起始時,求∠AMF的度數(shù);
(2)設(shè)BC的中點的為P,當(dāng)△PBM為等腰三角形時,求t的值;
(3)若兩個三角形重疊部分的面積為S,寫出S與t的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點關(guān)于AC的對稱點,反比例函數(shù)y= 的圖象經(jīng)過D點.
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點N,y軸正半軸上一點M,且四邊形ABMN是平行四邊形,求M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,E,F(xiàn)分別是OA,OC的中點,連接BE,DF
(1)根據(jù)題意,補全原形;
(2)求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾何學(xué)中,有“點動成_____________,線動成______________,_________________動成體”的原理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠BCD=120°,分別延長DC、BC到點E,F(xiàn),使得△BCE和△CDF都是正三角形.
(1)求證:AE=AF;
(2)求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC , D為邊BC上一點,以AB、BD為鄰邊作平行四邊形ABDE , 連接AD、EC . 若BD=CD , 求證:四邊形ADCE是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com