【題目】如圖1所示,已知:點(diǎn)A(﹣2,﹣1)在雙曲線C:y= 上,直線l1:y=﹣x+2,直線l2與l1關(guān)于原點(diǎn)成中心對稱,F(xiàn)1(2,2),F(xiàn)2(﹣2,﹣2)兩點(diǎn)間的連線與曲線C在第一象限內(nèi)的交點(diǎn)為B,P是曲線C上第一象限內(nèi)異于B的一動點(diǎn),過P作x軸平行線分別交l1 , l2于M,N兩點(diǎn).
(1)求雙曲線C及直線l2的解析式;
(2)求證:PF2﹣PF1=MN=4;
(3)如圖2所示,△PF1F2的內(nèi)切圓與F1F2 , PF1 , PF2三邊分別相切于點(diǎn)Q,R,S,求證:點(diǎn)Q與點(diǎn)B重合.(參考公式:在平面坐標(biāo)系中,若有點(diǎn)A(x1 , y1),B(x2 , y2),則A、B兩點(diǎn)間的距離公式為AB= .)
【答案】
(1)
解:把A(﹣2,﹣1)代入y= 中得:
a=(﹣2)×(﹣1)=2,
∴雙曲線C:y= ,
∵直線l1與x軸、y軸的交點(diǎn)分別是(2,0)、(0,2),它們關(guān)于原點(diǎn)的對稱點(diǎn)分別是(﹣2,0)、(0,﹣2),
∴l(xiāng)2:y=﹣x﹣2
(2)
解:設(shè)P(x, ),
由F1(2,2)得:PF12=(x﹣2)2+( ﹣2)2=x2﹣4x+ ﹣ +8,
∴PF12=(x+ ﹣2)2,
∵x+ ﹣2= = >0,
∴PF1=x+ ﹣2,
∵PM∥x軸
∴PM=PE+ME=PE+EF=x+ ﹣2,
∴PM=PF1,
同理,PF22=(x+2)2+( +2)2=(x+ +2)2,
∴PF2=x+ +2,PN=x+ +2
因此PF2=PN,
∴PF2﹣PF1=PN﹣PM=MN=4
(3)
解:
△PF1F2的內(nèi)切圓與F1F2,PF1,PF2三邊分別相切于點(diǎn)Q,R,S,
∴ PF2﹣PF1=QF2﹣QF1=4
又∵QF2+QF1=F1F2=4 ,QF1=2 ﹣2,
∴QO=2,
∵B( , ),
∴OB=2=OQ,
所以,點(diǎn)Q與點(diǎn)B重合
【解析】(1)利用點(diǎn)A的坐標(biāo)求出a的值,根據(jù)原點(diǎn)對稱的性質(zhì)找出直線l2上兩點(diǎn)的坐標(biāo),求出解析式;(2)設(shè)P(x, ),利用兩點(diǎn)距離公式分別求出PF1、PF2、PM、PN的長,相減得出結(jié)論;(3)利用切線長定理得出 ,并由(2)的結(jié)論P(yáng)F2﹣PF1=4得出PF2﹣PF1=QF2﹣QF1=4,再由兩點(diǎn)間距離公式求出F1F2的長,計算出OQ和OB的長,得出點(diǎn)Q與點(diǎn)B重合.此題主要考查了圓的綜合應(yīng)用以及反比例函數(shù)的性質(zhì)等知識,將代數(shù)與幾何融合在一起,注意函數(shù)中線段的長可以利用本題給出的兩點(diǎn)距離公式解出,也可以利用勾股定理解出;解答本題需要我們熟練各部分的內(nèi)容,對學(xué)生的綜合能力要求較高,一定要注意將所學(xué)知識貫穿起來.
【考點(diǎn)精析】本題主要考查了反比例函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時,求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時,在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2)
(1)請寫出△ABC關(guān)于x軸對稱的點(diǎn)A1、B1、C1的坐標(biāo);
(2)請?jiān)谶@個坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A2B2C2;
(3)計算:△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技館是少年兒童節(jié)假日游玩的樂園.如圖所示,圖中點(diǎn)的橫坐標(biāo)x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標(biāo)y表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對應(yīng)的函數(shù)解析式為y= ,10:00之后來的游客較少可忽略不計.
(1)請寫出圖中曲線對應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進(jìn)入.請問館外游客最多等待多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A. 在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形
B. 在△ABC中,若a2=(b+c) (b-c),則△ABC是直角三角形
C. 在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形
D. 在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com