【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系中,點(diǎn),分別在軸的正半軸和軸的正半軸上.
(1)分別以點(diǎn),,為圓心,為半徑作圓,得到,和,其中是的角內(nèi)圓的是_______;
(2)如果以點(diǎn)為圓心,以為半徑的為的角內(nèi)圓,且與一次函數(shù)圖像有公共點(diǎn),求的取值范圍;
(3)點(diǎn)在第一象限內(nèi),如果存在一個(gè)半徑為且過點(diǎn)的圓為∠EOM的角內(nèi)相切圓,直接寫出∠EOM的取值范圍.
【答案】(1),;(2);(3)
【解析】
(1)畫出圖象,根據(jù)角內(nèi)相切圓的定義判斷即可;
(2)求出兩種特殊位置時(shí)t的值即可判斷;
(3)如圖3中,連接OP,OM.首先求出∠POE,根據(jù)圖象可知當(dāng)射線OM在∠POF的內(nèi)部(包括射線OP,不包括射線OF)時(shí),存在一個(gè)半徑為1且過點(diǎn)P(2,)的圓為∠EOM的角內(nèi)相切圓.
(1)如圖1中,
∵點(diǎn)A(1,0),B(1,1),C(3,2)
∴觀察圖象可知,⊙B和⊙C是∠EOF的角內(nèi)圓.
(2)當(dāng)與軸相切時(shí),設(shè)切點(diǎn)為,則,可得.
當(dāng)與相切時(shí),設(shè)切點(diǎn)為,連接,設(shè)直線與直線交于點(diǎn),
則,都是等腰直角三角形,
,
,
,
可得,可知,滿足條件的的取值范圍是.
(3)如圖3中,連接OP,OM.
∵點(diǎn)P(2,),
∴tan∠POE==
∴∠POE=60°,
觀察圖象可知,當(dāng)射線OM在∠POF的內(nèi)部(包括射線OP,不包括射線OF)時(shí),
存在一個(gè)半徑為1且過點(diǎn)點(diǎn)P(2,)的圓為∠EOM的角內(nèi)相切圓,
∴60°≤∠EOM<90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AC=BC=m,D是AB邊上的一點(diǎn),將∠B沿著過點(diǎn)D的直線折疊,使點(diǎn)B落在AC邊的點(diǎn)P處(不與點(diǎn)A,C重合),折痕交BC邊于點(diǎn)E.
(1)特例感知 如圖1,若∠C=60°,D是AB的中點(diǎn),求證:AP=AC;
(2)變式求異 如圖2,若∠C=90°,m=6,AD=7,過點(diǎn)D作DH⊥AC于點(diǎn)H,求DH和AP的長(zhǎng);
(3)化歸探究 如圖3,若m=10,AB=12,且當(dāng)AD=a時(shí),存在兩次不同的折疊,使點(diǎn)B落在AC邊上兩個(gè)不同的位置,請(qǐng)直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,延長(zhǎng)至E使,以為邊在上方作正方形,延長(zhǎng)交于M,連接,,H為的中點(diǎn),連接分別與,交于點(diǎn)N、K.則下列結(jié)論:
①;②;③;④.
其中正確的是______________.(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn)是上一點(diǎn),以為直徑在正方形內(nèi)作半圓,將沿翻折,點(diǎn)剛好落在半圓上的點(diǎn)處,則的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車間有20名工人,某天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表.
車間20名工人某一天生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)表
生產(chǎn)零件的個(gè)數(shù)(個(gè)) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮用如圖所示的甲、乙兩個(gè)轉(zhuǎn)盤(甲轉(zhuǎn)盤被分成五個(gè)面積相等的扇形,乙轉(zhuǎn)盤被分成四個(gè)面積相等的扇形)做游戲,轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤各一次(如果指針恰好在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域?yàn)橹梗?/span>
(1)請(qǐng)你求出甲轉(zhuǎn)盤指針指向偶數(shù)區(qū)域的概率;
(2)若兩次數(shù)字之和為,或時(shí),則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)你用樹狀圖或列表法說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座截面邊緣為拋物線的拱形橋,當(dāng)拱頂離水面2米高時(shí),水面為4米,則當(dāng)水面下降1米時(shí),水面寬度增加__________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組,請(qǐng)結(jié)合題意填空,完成本題的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,一發(fā)光電子開始置于邊的點(diǎn)處,并設(shè)定此時(shí)為發(fā)光電子第一次與矩形的邊碰撞,將發(fā)光電子沿著方向發(fā)射,碰撞到矩形的邊時(shí)均反射,每次反射的反射角和入射角都等于,當(dāng)發(fā)光電子與矩形的邊碰撞2020次后,它與邊的碰撞次數(shù)是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com