【題目】將圓 為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的 倍,得到曲線C.
(1)求出C的普通方程;
(2)設(shè)直線l:x+2y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系, 求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

【答案】
(1)解:設(shè)(x1,y1)為圓上的任意一點(diǎn),在已知的變換下變?yōu)镃上的點(diǎn)(x,y),

則有

,∴


(2)解: 解得: ,

所以P1(2,0),P2(0,1),則線段P1P2的中點(diǎn)坐標(biāo)為 ,所求直線的斜率k=2,

于是所求直線方程為

化為極坐標(biāo)方程得:4ρcosθ﹣2ρsinθ﹣3=0,即


【解析】(1)求出C的參數(shù)方程,即可求出C的普通方程;(2)求出P1(2,0),P2(0,1),則線段P1P2的中點(diǎn)坐標(biāo)為 ,所求直線的斜率k=2,可得直線方程,即可求出極坐標(biāo)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一條折線A1B1A2B2A3B3A4B4…,它是由過(guò)A1(0,0),B1(2,2),A2(4,0)組成的折線依次平移4,8,12,…個(gè)單位得到的,直線y=kx+2與此折線恰有2n(n≥1,且為整數(shù))個(gè)交點(diǎn),則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 )上的值域?yàn)閇﹣1,2],則θ等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)+ax2 , a>0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(﹣1,0)有唯一零點(diǎn)x0 , 證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且n+1=1+Sn對(duì)一切正整數(shù)n恒成立.
(1)試求當(dāng)a1為何值時(shí),數(shù)列{an}是等比數(shù)列,并求出它的通項(xiàng)公式;
(2)在(1)的條件下,當(dāng)n為何值時(shí),數(shù)列 的前n項(xiàng)和Tn取得最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人投擲飛鏢,他們的成績(jī)(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計(jì)圖所示.則甲、乙、丙三人的訓(xùn)練成績(jī)方差S2 , S2 , S2的大小關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,an>0,且4Sn=an(an+2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,Tn=b1+b2+…+bn , 求證:Tn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在S市的A區(qū)開(kāi)設(shè)分店.為了確定在該區(qū)開(kāi)設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開(kāi)設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開(kāi)設(shè)分店的個(gè)數(shù),y表示這x個(gè)分店的年收入之和.

x(個(gè))

2

3

4

5

6

y(百萬(wàn)元)

2.5

3

4

4.5

6

(Ⅰ)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程y=
(Ⅱ)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬(wàn)元)與x,y之間的關(guān)系為z=y﹣0.05x2﹣1.4,請(qǐng)結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開(kāi)設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?
參考公式: = x+a, = = ,a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B為拋物線E:y2=2px(p>0)上異于頂點(diǎn)O的兩點(diǎn),△AOB是等邊三角形,其面積為48 ,則p的值為(
A.2
B.2
C.4
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案