【題目】如圖,已知在RtABC中,∠B30°,∠ACB90°,延長(zhǎng)CAO,使AOAC,以O為圓心,OA長(zhǎng)為半徑作OBA延長(zhǎng)線于點(diǎn)D,連接CD

1)求證:CDO的切線;

2)若AB4,求圖中陰影部分的面積.

【答案】1)見(jiàn)解析;(2S陰影2 π

【解析】

1)連接OD,求出∠OAD60°,得出等邊三角形OAD,求出ADOAAC,∠ODA=∠O60°,求出∠ADC=∠ACDOAD30°,求出∠ODC90°,根據(jù)切線的判定得出即可;

2)求出OD,根據(jù)勾股定理求出CD長(zhǎng),分別求出三角形ODC和扇形AOD的面積,相減即可.

1)證明:連接OD,

∵∠BCA90°,∠B30°,

∴∠OAD=∠BAC60°,

ODOA,

∴△OAD是等邊三角形,

ADOAAC,∠ODA=∠O60°,

∴∠ADC=∠ACDOAD30°,

∴∠ODC60°+30°=90°,

ODDC,

OD為半徑,

CDO的切線;

2)解:∵AB4,∠ACB90°,∠B30°,

ODOAACAB2,

由勾股定理得:CD

S陰影SODCS扇形AOD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F分別在BC,AB上,且DE∥AB,BE=AF.

(1)求證:四邊形ADEF是平行四邊形;

(2)若∠ABC=60°,BD=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲取更多利潤(rùn), 商店決定提高銷售價(jià)格,經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360; 若按每件25元的價(jià)格銷售時(shí),每月能賣210.假定每月銷售件數(shù)y()是價(jià)格x( /)的一次函數(shù).

(1)試求yx之間的函數(shù)關(guān)系式;

(2)在商品不積壓,且不考慮其他因素的條件下,問(wèn)銷售價(jià)格為多少時(shí),才能使每月獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?(總利潤(rùn)=總收入-總成本).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市將開(kāi)展演講比賽活動(dòng),某校對(duì)參加選拔的學(xué)生的成績(jī)按A、B、CD四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制了如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,

成績(jī)等級(jí)

頻數(shù)

頻率

A

4

n

B

m

0.51

C

D

15

1)求m、n的值;

2)求C等級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù);

3)已知成績(jī)等級(jí)為A4名學(xué)生中有1名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名學(xué)生代表學(xué)校參加全市比賽,求出恰好選中一男生和一女生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知RtABC的斜邊AB在平面直角坐標(biāo)系的x軸上,點(diǎn)C13)在反比例函數(shù)y的圖象上,且sinBAC,則點(diǎn)B的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購(gòu)進(jìn)的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進(jìn)價(jià);

該商場(chǎng)將購(gòu)進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過(guò)程中發(fā)現(xiàn)甲種商品銷量不好,商場(chǎng)決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問(wèn)甲種商品按原銷售單價(jià)至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行了創(chuàng)建全國(guó)文明城市知識(shí)競(jìng)賽活動(dòng),初一年級(jí)全體同學(xué)參加了競(jìng)賽.收集數(shù)據(jù):現(xiàn)隨機(jī)抽取初一年級(jí)30名同學(xué)創(chuàng)文知識(shí)競(jìng)賽成績(jī),分?jǐn)?shù)如下(單位:分):

90

85

68

92

81

84

95

93

87

89

78

99

89

85

97

88

81

95

86

98

95

93

89

86

84

87

79

85

89

82

⑴請(qǐng)將圖表中空缺的部分補(bǔ)充完整;

⑵學(xué)校決定表彰創(chuàng)文知識(shí)競(jìng)賽成績(jī)?cè)?/span>90分以上的同學(xué),根據(jù)上表統(tǒng)計(jì)結(jié)果估計(jì)該校初一年級(jí)360人中,約有多少人將獲得表彰;

創(chuàng)文知識(shí)競(jìng)賽中,受到表彰的小紅同學(xué)得到了印有龔扇、剪紙、彩燈、恐龍圖案的四枚紀(jì)念章,她從中選取兩枚送給弟弟,則小紅送給弟弟的兩枚紀(jì)念章中,恰好有恐龍圖案的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材呈現(xiàn):下圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第94頁(yè)的部分內(nèi)容.

線段垂直平分線

我們已知知道線段是軸對(duì)稱圖形,線段的垂直一部分線是線段的對(duì)稱軸,如圖直線是線段的垂直平分線,上任一點(diǎn),連結(jié)、,將線段與直線對(duì)稱,我們發(fā)現(xiàn)完全重合,由此都有:線段垂直平分線的性質(zhì)定理,線段垂直平分線上的點(diǎn)到線段的距離相等.

已知:如圖,,垂足為點(diǎn),,點(diǎn)是直線上的任意一點(diǎn).

求證:.

圖中的兩個(gè)直角三角形,只要證明這兩個(gè)三角形全等,便可證明(請(qǐng)寫(xiě)出完整的證明過(guò)程)

請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫(xiě)出“線段垂直平分線的性質(zhì)定理”完整的證明過(guò)程,定理應(yīng)用.

(1)如圖②,在中,直線、分別是邊、、的垂直平分線.

求證:直線、交于點(diǎn).

(2)如圖③,在中,,邊的垂直平分線交于點(diǎn),邊的垂直平分線交于點(diǎn),若,則的長(zhǎng)為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,內(nèi)接于圓,直徑的長(zhǎng)為2,過(guò)點(diǎn)的切線交的延長(zhǎng)線于點(diǎn).張老師要求添加條件后,編制一道題目,并解答.

1)在添加條件,求的長(zhǎng),請(qǐng)你解答.

2)以下是小明,小聰?shù)膶?duì)話:

小明:我加的條件是,就可以求出的長(zhǎng).

小聰:你這樣太簡(jiǎn)單了,我加的條件是,連結(jié),就可以證明全等.參考此對(duì)話,在內(nèi)容中添加條件,編制一道題目(可以添線、添字母),并解答.

查看答案和解析>>

同步練習(xí)冊(cè)答案