【題目】綜合與實踐

操作發(fā)現(xiàn):

如圖1和圖2,已知點為正方形的邊上的一個動點(點,,除外),作射線,作于點,于點,于點

1)如圖1,當點上(點,除外)運動時,求證:

        

2)如圖2,當點上(點,除外)運動時,請直接寫出線段,,之間的數(shù)量關(guān)系;

拓廣探索:

3)在(1)的條件下,找出與相等的線段,并說明理由;

4)如圖3,若點為矩形的邊上一點,作射線,作于點,于點于點.若,,則_______

【答案】1)見解析;(2;(3;理由見解析;(4

【解析】

(1)DHBGCF延長線于點H,得到四邊形DGFH為矩形,證得CF+ DG =CH,設(shè)法證得,得到AE=CH,即可證得結(jié)論;

(2)依照(1)的方法即可得到CF = AE + DG;

(3)根據(jù)(1)的方法證得,得到AE=BFBE=CF,利用(1)的結(jié)論可求得EF= DG;

(4)DHBGCF延長線于點H,得到四邊形DGFH為矩形,得到 DG= CH- CF,根據(jù)已知條件易證得,可求得,,由,可得到,求得,即可求得結(jié)論.

(1)DDHBGCF延長線于點H,如圖,

CFBGDGBG,

∴四邊形DGFH為矩形,

DG=HF,

CF+ DG= CF+ HF =CH,

∵四邊形ABCD為正方形,且AEBG,

AB=CD,∠ABC=BCD=AEB=90,

∴∠5+1=90,∠1+2=90,∠2+3=90,∠3+4=90,

∴∠5=4

中,

,

,

AE=CH

AE= CF+ DG;

(2)CF = AE + DG

依照(1)的方法,如圖,即可證明CF = AE + DG

(3)EF= DG,理由如下,如圖:

(1)得:∠5+1=90,∠1+2=90

∴∠5=2,

中,

,

,

AE=BF,BE=CF,

EF=BF-BE=AE-CF,

AE= CF+ DG

EF= DG;

(4)DDHBGCF延長線于點H,如圖,

CFBG,DGBG,

∴四邊形DGFH為矩形,

DG=HF,

DG= CH- CF,

∵四邊形ABCD為矩形,AEBG,CD=2BE=6,

AB=CD=2BE =6,BE =3,∠ABC=BCD=AEB=90,

,

,

∵∠ABC=BCD=AEB=90

∴∠5+1=90,∠1+2=90,∠2+3=90,∠3+4=90,

∴∠5=4=2=30

,,

,

,

,即,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了豐富學(xué)生的課余生活,計劃購買排球和籃球供球類興趣小組活動使用,若購買4個籃球和3個排球需用94元;若購買16個籃球和5個排球需用306元;

1)求一個籃球和一個排球各多少元;

2)該中學(xué)決定購買排球和籃球共40個,總費用不超過550元,那么該中學(xué)至少可以購買多少個排球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點坐標為,且與軸交于點C,與軸交于A、B兩點(點A在點B的右側(cè)).

1)求該拋物線的函數(shù)關(guān)系式;

2)點P是該拋物線上一動點,從點C沿拋物線向點A運動(點PA不重合),過點PPD軸,交直線AC于點D;作PEx軸,交直線AC于點E,以PD,PE為邊的矩形PEFD,問矩形PEFD周長是否存在最大值?若存在,求出此時P點的坐標及最大值;若不存在,請說明理由;

3)在問題(2)的條件下,P點滿足∠DAP=90°,且點E軸上,點F在拋物線上,問是否存在以A、PE、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰和小慧去某風(fēng)景區(qū)游覽,兩人在景點古剎處碰面,相約一起去游覽景點飛瀑,小聰騎自行車先行出發(fā),小慧乘電動車出發(fā),途徑草甸游玩后,再乘電動車去飛瀑,結(jié)果兩人同時到達飛瀑.圖中線段和折線表示小聰、小慧離古剎的路程(米)與小聰?shù)尿T行時間(分)的函數(shù)關(guān)系的圖象,根據(jù)圖中所給信息,解答下列問題:

1)小聰?shù)乃俣仁嵌嗌倜?/span>/分?從古剎到飛瀑的路程是多少米?

2)當小慧第一次與小聰相遇時,小慧離草甸還有多少米?

3)在電動車行駛速度不變的條件下,求小慧在草甸游玩的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,的平分線交于點,交的延長線于點,于點,,則的周長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)為了解九年級女同學(xué)的體育考試準備情況,隨機抽取部分女同學(xué)進行了800米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學(xué)校繪制了如下不完整的統(tǒng)計圖.

1)根據(jù)給出的信息,補全兩幅統(tǒng)計圖;

2)該校九年級有400名女生,請估計成績未達到良好有多少名?

3)某班甲、乙兩位成績優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運動會800米比賽.預(yù)賽分別為A、B、C三組進行,選手由抽簽確定分組.請用列表或樹狀圖求甲、乙兩人恰好分在同一組的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx5的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A坐標為(1,0),一次函數(shù)yx+k的圖象經(jīng)過點B、C

1)試求二次函數(shù)及一次函數(shù)的解析式;

2)如圖1,點D(2,0)x軸上一點,P為拋物線上的動點,過點P、D作直線PD交線段CB于點Q,連接PC、DC,若SCPD3SCQD,求點P的坐標;

3)如圖2,點E為拋物線位于直線BC下方圖象上的一個動點,過點E作直線EGx軸于點G,交直線BC于點F,當EF+CF的值最大時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個不相等的實數(shù)根,且其中一個根為另一個根的一半,則稱這樣的方程為“半等分根方程”.

1)①方程 半等分根方程(填“是”或“不是”);

②若是半等分根方程,則代數(shù)式

2)若點在反比例函數(shù)的圖象上,則關(guān)于的方程是半等分根方程嗎?并說明理由;

3)如果方程是半等分根方程,且相異兩點都在拋物線上,試說明方程的一個根為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形中,的圓心從點開始沿折線的速度向點運動,的圓心從點開始沿邊以的速度向點運動,半徑為的半徑為,若分別從點、點同時出發(fā),運動的時間為

1)請求出與腰相切時的值;

2)在范圍內(nèi),當為何值時,外切?

查看答案和解析>>

同步練習(xí)冊答案