【題目】如圖,在平行四邊形ABCD中,P是CD邊上的一點(diǎn),AP與BP分別平分∠DAB和∠CBA.
(1)判斷△APB是什么三角形,證明你的結(jié)論;
(2)比較DP與PC的大;
(3)畫出以AB為直徑的⊙O,交AD于點(diǎn)E,連接BE與AP交于點(diǎn)F,若tan∠BPC=,求tan∠AFE的值.
【答案】(1)△APB是直角三角形,理由見解析;(2)DP=PC;(3)tan∠AFE=.
【解析】
(1)可通過角的度數(shù)來判斷三角形APB的形狀.由于ABCD是平行四邊形,AD∥BC,那么同旁內(nèi)角∠DAB和∠CBA的和應(yīng)該是180°,AP與BP分別平分∠DAB和∠CBA,于是∠PAB和∠ABP的和就應(yīng)該是90°,即∠APB=90°,因此可得出三角形APB的形狀.
(2)可通過平行和角平分線,通過等角對等邊得出DP=AP,同理可證出PC=BC,根據(jù)平行四邊形的性質(zhì),AD=BC,可得出DP=PC.
(3)由AB為圓的直徑,根據(jù)直徑所對的圓周角為直角得到∠AEB=∠APB=90°,又AP為角平分線,根據(jù)角平分線定義得到一對角相等,根據(jù)兩對角相等的兩三角形相似,得到三角形AEF與三角形APB相似,進(jìn)而得到對應(yīng)角相等,又平行四邊形的對邊AB與DC平行,得到一對內(nèi)錯(cuò)角相等,等量代換得到∠AFE與∠BPC相等,即可求出所求∠AFE的正切值.
(1)△APB是直角三角形,理由如下:
∵AD∥BC,
∴∠DAB+∠ABC=180°;
又∵AP與BP分別平分∠DAB和∠CBA
∴∠PAB=∠DAB,∠PBA=∠ABC,
∴∠PAB+∠PBA=(∠ABC+∠DAB)
=×180°=90°,
∴△APB是直角三角形;
(2)∵DC∥AB,
∴∠BAP=∠DPA.
∵∠DAP=∠PAB,
∴∠DAP=∠DPA,
∴DA=DP
同理證得CP=CB.
∴DP=PC.
(3)∵AB是⊙O直徑,
∴∠AEB=∠APB=90°.
∵AP為角平分線,即∠EAF=∠PAB,
∴△AEF∽△APB,
∴∠AFE=∠ABP,
又ABCD為平行四邊形,∴DC∥AB,
∴∠ABP=∠BPC,
∵tan∠BPC=,
∴tan∠AFE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),B(﹣4,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C,求△BMC面積的最大值;
(3)在(2)中△BMC面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是BA延長線上一點(diǎn),CD切⊙O于D點(diǎn),弦DE∥CB,Q是AB上一動(dòng)點(diǎn),CA=1,CD是⊙O半徑的倍.
(1)求⊙O的半徑R;
(2)當(dāng)Q從A向B運(yùn)動(dòng)的過程中,圖中陰影部分的面積是否發(fā)生變化?若發(fā)生變化,請你說明理由;若不發(fā)生變化,請你求出陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線p: 的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過點(diǎn)C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,在、上分別找點(diǎn)、,使,將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn),的中點(diǎn)恰好落在的中點(diǎn),延長交于,連接.
(1)四邊形是什么特殊四邊形?說明理由.
(2)是否存在中,使得圖中四邊形為菱形?若不存在,說明理由;若存在,求出此時(shí)的面積與面積的倍數(shù)關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AC是直徑,∠A=30°,BC=4,點(diǎn)D是AB的中點(diǎn),連接DO并延長交⊙O于點(diǎn)P.
(1)求劣弧PC的長(結(jié)果保留π);
(2)過點(diǎn)P作PF⊥AC于點(diǎn)F,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com