如圖,點(diǎn)A是雙曲線與直線y=-x-(k+1)在第二象限內(nèi)的交點(diǎn),AB⊥x軸于B,且S△ABO=
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOC的面積.

【答案】分析:(1)欲求這兩個(gè)函數(shù)的解析式,關(guān)鍵求k值.根據(jù)反比例函數(shù)性質(zhì),k絕對(duì)值為5且為負(fù)數(shù),由此即可求出k;
(2)交點(diǎn)A、C的坐標(biāo)是方程組 的解,解之即得;從圖形上可看出△AOC的面積為兩小三角形面積之和,根據(jù)三角形的面積公式即可求出.
解答:解:(1)設(shè)A點(diǎn)坐標(biāo)為(x,y),且x<0,y>0,
則S△ABO=•|BO|•|BA|=•(-x)•y=,
∴xy=-5,
又∵y=,
即xy=k,
∴k=-5,
∴所求的兩個(gè)函數(shù)的解析式分別為y=-,y=-x+4;

(2)由y=-x+4,
令y=0,得x=4.
∴直線y=-x+4與x軸的交點(diǎn)D的坐標(biāo)為(4,0),
A、C兩點(diǎn)坐標(biāo)滿足,解得:,
∴交點(diǎn)A為(-1,5),C為(5,-1),
∴S△AOC=S△ODA+S△ODC=|OD|•(|y1|+|y2|)=×4×(5+1)=12.
點(diǎn)評(píng):此題首先利用待定系數(shù)法確定函數(shù)解析式,然后利用解方程組來(lái)確定圖象的交點(diǎn)坐標(biāo),及利用坐標(biāo)求出線段和圖形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,點(diǎn)A是雙曲線數(shù)學(xué)公式與直線y=-x-(k+1)在第二象限內(nèi)的交點(diǎn),AB⊥x軸于B,且S△ABO=數(shù)學(xué)公式
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,點(diǎn)A是雙曲線數(shù)學(xué)公式與直線y=-x-k在第二象限內(nèi)的交點(diǎn),AB⊥x軸于B,且S△ABO=3
(1)求這兩個(gè)函數(shù)的解析式;
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A、C的坐標(biāo)和△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A是雙曲線與直線y=-x-(k+1)

在第二象限內(nèi)的交點(diǎn),AB⊥x軸于B,且S△ABO.

(1)求這兩個(gè)函數(shù)的解析式;

(2)求直線與雙曲線的兩個(gè)交點(diǎn)A、C的坐標(biāo)和△AOC的面積.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年10月云南省玉溪市四中九年級(jí)(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,點(diǎn)A是雙曲線與直線y=-x-(k+1)在第二象限內(nèi)的交點(diǎn),AB⊥x軸于B,且S△ABO=
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案