【題目】在證明“勾股定理”時(shí),可以將4個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示).如果小正方形的面積是25,大正方形的面積為49,直角三角形中較小的銳角為α,那么tanα的值是____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,點(diǎn)是線段上一動(dòng)點(diǎn),連接,將沿直線折疊,點(diǎn)落到處,連接,,當(dāng)為等腰三角形時(shí),的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年3月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測儀進(jìn)行海上搜救,分別在A、B兩個(gè)探測點(diǎn)探測到C處是信號(hào)發(fā)射點(diǎn),已知A、B兩點(diǎn)相距400m,探測線與海平面的夾角分別是和,若CD的長是點(diǎn)C到海平面的最短距離.
問BD與AB有什么數(shù)量關(guān)系,試說明理由;
求信號(hào)發(fā)射點(diǎn)的深度結(jié)果精確到1m,參考數(shù)據(jù):,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊的中點(diǎn),過D作DE⊥BC于點(diǎn)E,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),AP與CD相交于點(diǎn)Q.當(dāng)AP+PD的值最小時(shí),AQ與PQ之間的數(shù)量關(guān)系是( )
A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作DF⊥AC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若 ,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系,拋物線與軸交于點(diǎn)A(-2,0)和點(diǎn)B(4,0) .
(1)求這條拋物線的表達(dá)式和對(duì)稱軸;
(2)點(diǎn)C在線段OB上,過點(diǎn)C作CD⊥軸,垂足為點(diǎn)C,交拋物線與點(diǎn)D,E是BD中點(diǎn),聯(lián)結(jié)CE并延長,與軸交于點(diǎn)F.
①當(dāng)D恰好是拋物線的頂點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);
②聯(lián)結(jié)BF,當(dāng)△DBC的面積是△BCF面積的時(shí),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明研究一函數(shù)的性質(zhì),下表是該函數(shù)的幾組對(duì)應(yīng)值:
在平面直角坐標(biāo)系中,描出以上表格中的各點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)圖像
根據(jù)所畫函數(shù)圖像,寫出該函數(shù)的一條性質(zhì): .
根據(jù)圖像直接寫出該函數(shù)的解析式及自變量的取值范圍: ;
若一次函數(shù)與該函數(shù)圖像有三個(gè)交點(diǎn),則的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿軸以每秒個(gè)單位的速度向上移動(dòng),且過點(diǎn)的直線也隨之移動(dòng),如果點(diǎn)關(guān)于的對(duì)稱點(diǎn)落在坐標(biāo)軸上,沒點(diǎn)的移動(dòng)時(shí)間為,那么的值可以是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,∠EAF=45°.
(1)如圖,當(dāng)點(diǎn)E、F分別在邊BC、CD上,連接EF,求證:EF=BE+DF;
童威同學(xué)是這樣思考的,請你和他一起完成如下解答:證明:將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABG,所以△ADF≌△ABG.
(2)如圖,點(diǎn)M、N分別在邊AB、CD上,且BN=DM.當(dāng)點(diǎn)E、F分別在BM、DN上,連接EF,探究三條線段EF、BE、DF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如圖,當(dāng)點(diǎn)E、F分別在對(duì)角線BD、邊CD上.若FC=2,則BE的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com