如圖,在平面直角坐標(biāo)系中,△AOB是直角三角形,∠AOB=90°,斜邊AB與y軸交于點(diǎn)C.
(1)若∠A=∠AOC,求證:∠B=∠BOC;
精英家教網(wǎng)
(2)延長(zhǎng)AB交x軸于點(diǎn)E,過(guò)O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度數(shù);
(3)如圖,OF平分∠AOM,∠BCO的平分線交FO的延長(zhǎng)線于點(diǎn)P,當(dāng)△ABO繞O點(diǎn)旋轉(zhuǎn)時(shí)(斜邊AB與y軸正半軸始終相交于點(diǎn)C),在(2)的條件下,試問(wèn)∠P的度數(shù)是否發(fā)生改變?若不變,請(qǐng)求其度數(shù);若改變,請(qǐng)說(shuō)明理由.
分析:(1)易證∠B與∠BOC分別是∠A與∠AOC的余角,等角的余角相等,就可以證出;
(2)易證∠DOB+∠EOB+∠OEA=90°,且∠DOB=∠EOB=∠OEA就可以得到;
(3)∠P=180°-(∠PCO+∠FOM+90°)根據(jù)角平分線的定義,就可以求出.
解答:解:(1)∵△AOB是直角三角形,
∴∠A+∠B=90°,∠AOC+∠BOC=90°.
∵∠A=∠AOC,
∴∠B=∠BOC;

(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,
∴∠A=∠DOB即∠DOB=∠EOB=∠OAE=∠OEA.
∵∠DOB+∠EOB+∠OEA=90°,
∴∠DOB=30°,
∴∠A=30°;

(3)∠P的度數(shù)不變,∠P=30°,
∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC,
∵OF平分∠AOM,CP平分∠BCO,
∴∠FOM=
1
2
∠AOM=
1
2
(90°-∠AOC)=45°-
1
2
∠AOC,∠PCO=
1
2
∠BCO=
1
2
(∠A+∠AOC)=
1
2
∠A+
1
2
∠AOC.
∴∠P=180°-(∠PCO+∠FOM+90°)
=45°-
1
2
∠A
=30°.
點(diǎn)評(píng):本題主要考查了角平分線的定義和直角三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案