10
是個(gè)無(wú)理數(shù),
10
-1在哪兩個(gè)整數(shù)之間( 。
分析:根據(jù)3=
9
10
16
=4,從而可以計(jì)算出
10
-1在哪兩個(gè)整數(shù)之間.
解答:解:由題意得:3=
9
10
16
=4,
 
9
-1<
10
-1<
16
-1,
即2<
10
-1<3,
故選:B.
點(diǎn)評(píng):本題考查了估算無(wú)理數(shù)大小的知識(shí),難度不大,注意夾逼法的運(yùn)用是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:①
(-10)2
=-10
;②數(shù)軸上的點(diǎn)與實(shí)數(shù)成一一對(duì)應(yīng)關(guān)系;③-2是
16
的平方根;④任何實(shí)數(shù)不是有理數(shù)就是無(wú)理數(shù);⑤兩個(gè)無(wú)理數(shù)的和還是無(wú)理數(shù);⑥無(wú)理數(shù)都是無(wú)限小數(shù),正確的個(gè)數(shù)有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

同學(xué)們,學(xué)習(xí)了無(wú)理數(shù)之后,我們已經(jīng)把數(shù)的領(lǐng)域擴(kuò)大到了實(shí)數(shù)的范圍,這說(shuō)明我們的知識(shí)越來(lái)越豐富了!可是,無(wú)理數(shù)究竟是一個(gè)什么樣的數(shù)呢?下面讓我們?cè)趲讉(gè)具體的圖形中認(rèn)識(shí)一下無(wú)理數(shù).
(1)如圖①△ABC是一個(gè)邊長(zhǎng)為2的等腰直角三角形.它的面積是2,把它沿著斜邊的高線剪開(kāi)拼成如圖②的正方形ABCD,則這個(gè)正方形的面積也就等于正方形的面積即為2,則這個(gè)正方形的邊長(zhǎng)就是
2
,它是一個(gè)無(wú)理數(shù).

(2)如圖,直徑為1個(gè)單位長(zhǎng)度的圓從原點(diǎn)O沿?cái)?shù)軸向右滾動(dòng)一周,圓上的一點(diǎn)P(滾動(dòng)時(shí)與點(diǎn)O重合)由原點(diǎn)到達(dá)點(diǎn)O′,則OO′的長(zhǎng)度就等于圓的周長(zhǎng)π,所以數(shù)軸上點(diǎn)O′代表的實(shí)數(shù)就是
π
π
,它是一個(gè)無(wú)理數(shù).

(3)如圖,在Rt△ABC中,∠C=90°,AC=2,BC=1,根據(jù)勾股定理可求得AB=
5
5
,它是一個(gè)無(wú)理數(shù).

好了,相信大家對(duì)無(wú)理數(shù)是不是有了更具體的認(rèn)識(shí)了,那么你是也試著在圖形中作出兩個(gè)無(wú)理數(shù)吧:
1、你能在6×8的網(wǎng)格圖中(每個(gè)小正方形邊長(zhǎng)均為1),畫(huà)出一條長(zhǎng)為
10
的線段嗎?

2、學(xué)習(xí)了實(shí)數(shù)后,我們知道數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對(duì)應(yīng)的關(guān)系.那么你能在數(shù)軸上找到表示 -
5
的點(diǎn)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法:①
(-10)2
=-10
;②數(shù)軸上的點(diǎn)與實(shí)數(shù)成一一對(duì)應(yīng)關(guān)系;③-2是
16
的平方根;④任何實(shí)數(shù)不是有理數(shù)就是無(wú)理數(shù);⑤兩個(gè)無(wú)理數(shù)的和還是無(wú)理數(shù);⑥無(wú)理數(shù)都是無(wú)限小數(shù),正確的個(gè)數(shù)有(  )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案