【題目】如圖1,△ABC和△DBC都是邊長(zhǎng)為2的等邊三角形.
(1)以圖1中的某個(gè)點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC,就能使△DBC與△ABC重合,則滿足題意的點(diǎn)為: (寫(xiě)出符合條件的所有點(diǎn));
(2)將△DBC沿BC方向平移得到△D1B1C1,如圖2、圖3,則四邊形ABD1C1是平行四邊形嗎?證明你的結(jié)論;
(3)在(2)的條件下,當(dāng)BB1= 時(shí),四邊形ABD1C1為矩形.
【答案】(1)B點(diǎn)、C點(diǎn)、BC的中點(diǎn);(2)是平行四邊形.理由見(jiàn)解析;(3)2
【解析】
(1)根據(jù)等邊三角形的性質(zhì),得到四邊形ABCD是菱形,從而再根據(jù)菱形是中心對(duì)稱圖形,得到旋轉(zhuǎn)中心有B點(diǎn)、C點(diǎn)、BC的中點(diǎn);
(2)根據(jù)平移的性質(zhì),得到BB1=CC1,根據(jù)等邊三角形的性質(zhì),得到AC=B1D1,∠BB1D1=∠ACC1,從而得到△BB1D1≌△ACC1,則AB=C1D1,再根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形即可證明;
(3)根據(jù)等邊三角形的性質(zhì)得出AD=BD=DD1,∠ADB=60°,進(jìn)而得出∠BAD=90°,再利用矩形的判定得出即可.
解:(1)∵等邊△ABC和等邊△DBC有公共的底邊BC,
∴AB=BC=CD=AD,
∴四邊形ABCD是菱形.
∴要旋轉(zhuǎn)△DBC,使△DBC與△ABC重合,有三點(diǎn)分別為:B點(diǎn)、C點(diǎn)、BC的中點(diǎn),
故答案為:B點(diǎn)、C點(diǎn)、BC的中點(diǎn);
(2)四邊形ABD1C1是平行四邊形.理由如下:
根據(jù)平移的性質(zhì),得到BB1=CC1,
根據(jù)等邊三角形的性質(zhì),得到AC=B1D1,∠BB1D1=∠ACC1,
∴△BB1D1≌△ACC1,
∴AC1=BD1,
又AB=C1D1,
∴四邊形ABD1C1是平行四邊形;
(3)當(dāng)移動(dòng)距離BB1=2時(shí),四邊形ABC1D1是矩形.
理由:連接BC1,AD1,
∵△ABD,△BDC都是邊長(zhǎng)為2的等邊三角形,
∴AD=BD=DD1,∠ADB=60°,
∴∠DAD1=∠DD1A=30°,
∴∠BAD=60°+30°=90°,
∵由(2)可得出四邊形ABC1D1是平行四邊形,
∴平行四邊形ABC1D1是矩形.
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開(kāi)挖兩段河渠,所挖河渠的長(zhǎng)度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示,根據(jù)圖象所提供的信息分析,解決下例問(wèn)題:
(1)甲隊(duì)的工作速度;
(2)分別求出乙隊(duì)在0≤x≤2和2≤x≤6時(shí)段,y與x的函數(shù)解析式, 并求出甲乙兩隊(duì)所挖河渠長(zhǎng)度相等時(shí)x的值;
(3)當(dāng)兩隊(duì)所挖的河渠長(zhǎng)度之差為5m時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某烤鴨店在確定烤鴨的烤制時(shí)間時(shí),主要依據(jù)的是下表的數(shù)據(jù):
鴨的質(zhì)量/千克 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
烤制時(shí)間/分 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
設(shè)鴨的質(zhì)量為x千克,烤制時(shí)間為t分鐘,估計(jì)當(dāng)時(shí),的值為( )
A. 140B. 200C. 240D. 260
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCO放在直角坐標(biāo)系中,其中頂點(diǎn)B的坐標(biāo)為(10, 8),E是BC邊上一點(diǎn)將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過(guò)點(diǎn)E的反比例函數(shù)y=的圖象與邊AB交于點(diǎn)F, 則線段AF的長(zhǎng)為( )
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為⊙的直徑,弦于點(diǎn),點(diǎn)是上一點(diǎn),連結(jié), .
()在下添輔助線的前提下直接寫(xiě)出圖中與相等的角,不用證明.
()求證:當(dāng)時(shí), 與相似.
()若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】()如圖, 是形內(nèi)的高, 是的外接圓⊙的直徑.
①求證: .
②若, , ,⊙ 的直徑長(zhǎng).
③如圖,在邊長(zhǎng)為的小正方形組成的網(wǎng)格之中有一個(gè)格點(diǎn)三角形,請(qǐng)你從上面兩小題中獲得經(jīng)驗(yàn),直接寫(xiě)出此格點(diǎn)三角形的外接圓面積.
()如圖, 是形外的高,若, , ,( )題中②的結(jié)論是否還成立?成立與否都要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中, , ,動(dòng)點(diǎn)在邊上,連結(jié),過(guò)點(diǎn)作的垂線,交直線于點(diǎn).設(shè), .
()求關(guān)于的函數(shù)關(guān)系式.
()當(dāng)時(shí),求的長(zhǎng).
()若直線與線段延長(zhǎng)線交于點(diǎn),當(dāng)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的一點(diǎn),F為AB邊上一點(diǎn),連接CF,交BE于點(diǎn)D,且∠ACF=∠CBE,CG平分∠ACB交BD于點(diǎn)G,
(1)如圖1,求證:CF=BG;
(2)如圖2,延長(zhǎng)CG交AB于H,連接AG,過(guò)點(diǎn)C作CP∥AG交BE的延長(zhǎng)線于點(diǎn)P,
求證:PB=CP+CF;
(3)如圖3,在(2)間的條件下,當(dāng)∠GAC=2∠FCH時(shí),若S△AEG=3,BG=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪出的統(tǒng)計(jì)圖如圖所示,則符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A.從一裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到紅球的概率
B.擲一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率
C.拋一枚硬幣,出現(xiàn)正面的概率
D.任意寫(xiě)一個(gè)整數(shù),它能被2整除的概率
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com