5、如圖,已知AB=AC=5,BC=3,沿BD所在的直線折疊,使點C落在AB上的E點,則△AED的周長為
7
分析:先根據(jù)翻折變換的性質(zhì)得出DE=DC,BE=BC=3及AE的長,再求出△AED的周長即可.
解答:解:∵△BDE是△BDC沿直線BD翻折變換而成,
∴DE=DC,BE=BC=3,
∴AE=AB-BE=5-3=2,
∴三角形ADE周長=AD+DE+AE=AD+DC+2=AC+2=5+2=7.
故答案為:7.
點評:本題考查的是圖形翻折變換的性質(zhì),即折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,則∠BFD的度數(shù)是( 。
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,已知AB=AC,D是BC的中點,E是AD上的一點,圖中全等三角形有幾對(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖,已知AB=AC,AD=AE.求證BD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,已知AB=AC,AD=AE,BD=EC,則圖中有
2
對全等三角形,它們是
△ABD≌△AEC
;
△ABE≌△ADC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步練習冊答案