【題目】如圖,在RtABC中,∠C=90°,B=30°,以A為圓心適當長為半徑畫弧,分別交AC、AB于點M、N,分別以點M、N為圓心,大于MN的長為半徑畫弧交于點P,作射線APBC于點D,再作射線DEAB于點E,則下列結論錯誤的是( 。

A. ADB=120° B. SADC:SABC=1:3

C. CD=2,則BD=4 D. DE垂直平分AB

【答案】D

【解析】分析:根據(jù)題意得出AD為∠CAB的平分線,然后根據(jù)平分線的性質(zhì)得出答案.

詳解:∵∠B=30°,∠C=90°,AD平分∠CAB, ∴∠CAD=∠DAB=30°,則∠ADB=120°,

A正確;當CD=2時,根據(jù)角平分線的性質(zhì)可得:DE=2,BD=4,則C正確;△ACD的面積=AC×CD÷2,△ABC的面積=AC×BC÷2,則SADC:SABC=1:3,故B正確;DE垂直AB,故D錯誤;則本題選擇D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=-x+2x軸、y軸分別交于點A、C,拋物線y=-x2bxc過點A、C,且與x軸交于另一點B,在第一象限的拋物線上任取一點D,分別連接CD、AD,作于點E

(1)求拋物線的表達式;

(2)ACD面積的最大值;

(3)CEDCOB相似,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙OABC外接圓,直徑AB=12,A=2B.

(1)A=   °,B=   °;

(2)求BC的長(結果用根號表示);

(3)連接OC并延長到點P,使CP=OC,連接PA,畫出圖形,求證:PA是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃用900元從生產(chǎn)廠家購進50臺計算器,已知該廠家生產(chǎn)三種不同型號的計算器,出廠價分別為A種每臺15元,B種每臺21元,C種毎臺25元.

1)商場同時購進兩種不同型號的計算器50臺,用去900元.

①若同時購進A、B 兩種時,則購進A、B 兩種計算器各多少臺?;

②若同時購進A、C 兩種時,則購進A、C 兩種計算器各多少臺?;

2)若商場銷售一臺A種計算器可獲利5元,銷售一臺B種計算器可獲利8元,銷售一臺C種計算器可獲利12元,在同時購進兩種不同型號的計算器方案中,為了使銷售時獲利最多,你選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形在數(shù)軸上的位置如圖所示,點,對應的數(shù)分別為-10,若正方形繞著頂點順時針方向在數(shù)軸上連續(xù)翻轉,翻轉1次后,點所對應的數(shù)為1;翻轉2次后,點所對應的數(shù)為2;翻轉3次后,點所對應的數(shù)為3;翻轉4次后,點所對應的數(shù)為4,…,則連續(xù)翻轉2019次后,數(shù)軸上數(shù)2019所對應的點是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商販在批發(fā)市場以每包元的價格購進甲種茶葉40包,以每包元的價格購進乙種茶葉60.

1)該商販購進甲、乙兩種茶葉共需資金______元(用含,的式子表示);

2)若該商販將兩種茶葉都提價全部售出,共可獲利多少元(用含,的式子表示)?

3)若該商販將兩種茶葉都以每包元的價格全部出售,在這次買賣中該商販是盈利還是虧損,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,把AB邊上的點D順時針旋轉得到AB于點E,若,則的面積是

A. 3 B. 5 C. 11 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖:在△ABC中,AC=3,BC=6,C=60;

(1)將△ABC繞著點C旋轉,使點A落在直線BC上的點A,B落在B′,在下圖中畫出旋轉后的△ABC.

(2)直接寫出AB的長,AB=___________.

查看答案和解析>>

同步練習冊答案