【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

【答案】D

【解析】過另一個頂點C作垂線CD如圖,可得直角三角形,根據(jù)直角三角形中30°角所對的邊等于斜邊的一半,可求出有45°角的三角板的直角直角邊,再由等腰直角三角形求出最大邊.

解答:解:過點C作CDAD,CD=3,
在直角三角形ADC中,
∵∠CAD=30°,
AC=2CD=2×3=6,
又三角板是有45°角的三角板,
AB=AC=6,
BC2=AB2+AC2=62+62=72,
BC=

故選:D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由若干邊長為1的小正方形拼成一系列“L”形圖案(如圖1).

(1)當“L”形由7個正方形組成時,其周長為;
(2)如圖2,過格點D作直線EF,分別交AB,AC于點E,F(xiàn).
①試說明AEAF=AE+AF;
②若“L”形由n個正方形組成時,EF將“L”形分割開,直線上方的面積為整個“L”形面積的一半,試求n的取值范圍以及此時線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以BC為底邊的等腰△ABC,點D,E,G分別在BCAB,AC上,且EGBC,DEAC,延長GE至點F,使得BE=BF

1)求證:四邊形BDEF為平行四邊形;

2)當∠C=45°,BD=2時,求DF兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1經(jīng)過過點P(2,2),分別交x軸、y軸于點A(4,0),B。

(1)求直線l1的解析式;

(2)點Cx軸負半軸上一點,過點C的直線l2交線段AB于點D。

如圖1,當點D恰與點P重合時,點Qt,0)為x軸上一動點,過點QQMx軸,分別交直線l1、l2于點M、N。若,MN=2MQ,求t的值;

如圖2,若BC=CD,試判斷m,n之間的數(shù)量關系并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,求水管AB的長;

(2)如圖2,在△ABC中,D是BC邊上的點,已知AB=13,AD=12,AC=15,BD=5,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB分別與⊙O相切于點A、B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等邊三角形,DBC邊上的一個動點(點D不與B,C重合)△ADF是以AD為邊的等邊三角形,過點FBC的平行線交射線AC于點E,連接BF

1)如圖1,求證:△AFB≌△ADC;

2)請判斷圖1中四邊形BCEF的形狀,并說明理由;

3)若D點在BC 邊的延長線上,如圖2,其它條件不變,請問(2)中結(jié)論還成立嗎?如果成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(﹣1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.

(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標;
(2)若直線y=kx+d經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知函數(shù)的圖象與反比例函數(shù)的圖象的一個交點為A,則= ________

(2)如果滿足,試求代數(shù)式的值.

(3)已知,,求的值.

查看答案和解析>>

同步練習冊答案