【題目】植樹(shù)節(jié)期間,某單位欲購(gòu)進(jìn)A、B兩種樹(shù)苗,若購(gòu)進(jìn)A種樹(shù)苗3棵,B種樹(shù)苗5顆,需2100元,若購(gòu)進(jìn)A種樹(shù)苗4顆,B種樹(shù)苗10顆,需3800元.
(1)求購(gòu)進(jìn)A、B兩種樹(shù)苗的單價(jià);
(2)若該單位準(zhǔn)備用不多于8000元的錢(qián)購(gòu)進(jìn)這兩種樹(shù)苗共30棵,求A種樹(shù)苗至少需購(gòu)進(jìn)多少棵?

【答案】
(1)解:設(shè)B樹(shù)苗的單價(jià)為x元,則A樹(shù)苗的單價(jià)為y元,可得: ,

解得:

答:B樹(shù)苗的單價(jià)為300元,A樹(shù)苗的單價(jià)為200元


(2)解:設(shè)購(gòu)買(mǎi)A種樹(shù)苗a棵,則B種樹(shù)苗為(30﹣a)棵,

可得:200a+300(30﹣a)≤8000,

解得:a≥10,

答:A種樹(shù)苗至少需購(gòu)進(jìn)10棵


【解析】(1)設(shè)B樹(shù)苗的單價(jià)為x元,則A樹(shù)苗的單價(jià)為y元.則由等量關(guān)系列出方程組解答即可;(2)設(shè)購(gòu)買(mǎi)A種樹(shù)苗a棵,則B種樹(shù)苗為(30﹣a)棵,然后根據(jù)總費(fèi)用和兩種樹(shù)的棵數(shù)關(guān)系列出不等式解答即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛客車(chē)從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫(xiě)出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車(chē)同時(shí)從乙地出發(fā)前往甲地,客車(chē)比貨車(chē)平均每小時(shí)多行駛20千米,3小時(shí)后兩車(chē)相遇.
①求兩車(chē)的平均速度;
②甲、乙兩地間有兩個(gè)加油站A、B,它們相距200千米,當(dāng)客車(chē)進(jìn)入B加油站時(shí),貨車(chē)恰好進(jìn)入A加油站(兩車(chē)加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛞来涡D(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖1,在△ABC看,把AB點(diǎn)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱(chēng)△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線(xiàn)AD叫做△ABC的“旋補(bǔ)中線(xiàn)”,點(diǎn)A叫做“旋補(bǔ)中心”.

(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線(xiàn)”.①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為AD=BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2 ,DA=6.在四邊形內(nèi)部是否存在點(diǎn)P,使△PDC是△PAB的“旋補(bǔ)三角形”?若存在,給予證明,并求△PAB的“旋補(bǔ)中線(xiàn)”長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題
(1)計(jì)算:|﹣3|+( +π)0﹣(﹣ 2﹣2cos60°;
(2)先化簡(jiǎn),在求值:( )+ ,其中a=﹣2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三角形紙片ABC中,∠A=90°,∠C=30°,AC=30cm,將該紙片沿過(guò)點(diǎn)B的直線(xiàn)折疊,使點(diǎn)A落在斜邊BC上的一點(diǎn)E處,折痕記為BD(如圖1),減去△CDE后得到雙層△BDE(如圖2),再沿著過(guò)△BDE某頂點(diǎn)的直線(xiàn)將雙層三角形剪開(kāi),使得展開(kāi)后的平面圖形中有一個(gè)是平行四邊形,則所得平行四邊形的周長(zhǎng)為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶10次,每次射靶的成績(jī)?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

8

8

8

8

2.2

6

3


(2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定,并簡(jiǎn)要說(shuō)明理由;
(3)比賽時(shí)三人依次出場(chǎng),順序由抽簽方式?jīng)Q定,求甲、乙相鄰出場(chǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知CA=CB=5,BA=6,點(diǎn)E是線(xiàn)段AB上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)F是線(xiàn)段AC上的動(dòng)點(diǎn),連接CE、EF,若在點(diǎn)E、點(diǎn)F的運(yùn)動(dòng)過(guò)程中,始終保證∠CEF=∠B.
(1)求證:∠AEF=∠BCE;
(2)當(dāng)以點(diǎn)C為圓心,以CF為半徑的圓與AB相切時(shí),求BE的長(zhǎng);
(3)探究:在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,△CEF可能為等腰三角形嗎?若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線(xiàn)為邊的三角形稱(chēng)為“格點(diǎn)三角形”,圖中的△ABC就是格點(diǎn)三角形,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C的坐標(biāo)為(0,﹣1).

(1)在如圖的方格紙中把△ABC以點(diǎn)O為位似中心擴(kuò)大,使放大前后的位似比為1:2,畫(huà)出△A1B2C2(△ABC與△A1B2C2在位似中心O點(diǎn)的兩側(cè),A,B,C的對(duì)應(yīng)點(diǎn)分別是A1 , B2 , C2).
(2)利用方格紙標(biāo)出△A1B2C2外接圓的圓心P,P點(diǎn)坐標(biāo)是 , ⊙P的半徑= . (保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案