精英家教網(wǎng)如圖,在邊長為2的等邊△ABC中,AD⊥BC,點P為邊AB 上一個動點,過P點作PF∥AC交線段BD于點F,作PG⊥AB交AD于點E,交線段CD于點G,設(shè)BP=x.
(1)①試判斷BG與2BP的大小關(guān)系,并說明理由;②用x的代數(shù)式表示線段DG的長,并寫出自變量x的取值范圍;
(2)記△DEF的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值;
(3)以P、E、F為頂點的三角形與△EDG是否可能相似?如果能相似,請求出BP的長,如果不能,請說明理由.
分析:(1)①BG=2BP,根據(jù)等邊三角形的性質(zhì)求出∠BGP=30°,根據(jù)直角三角形的性質(zhì)即可得出答案;②BG=2BP,BD=
1
2
BC=1,則DG=2x-1,根據(jù)點G在線段CD上,所以求G與D、C重合時x的值即可確定自變量x的取值范圍,即可解題.(2)根據(jù)勾股定理求出GP,證△EDG∽△BPG得
ED
BP
=
DG
PG
,代入即可求出DE,由PF∥AC,得到
BP
AB
=
BF
BC
,求出DF,根據(jù)三角形的面積公式即可求出答案;
(3)求出∠FPE=30°,①當(dāng)∠FEP=90°時,由EF∥AB,得出
DE
AD
=
DF
BD
,代入即可求出x;②當(dāng)∠PFE=90°時,
由△BPF是等邊三角形,求出∠EFD=30°=∠PGD,根據(jù)等腰三角形的性質(zhì)得到DF=DG,代入即可求出x.
解答:(1)解:①BG=2BP,
理由是:∵等邊△ABC,PG⊥AB,精英家教網(wǎng)
∴∠B=60°,∠BPG=90°,
∴∠BGP=180°-90°-60°=30°,
∴BG=2BP,
答:BG與2BP的大小關(guān)系是BG=2BP.

②解:∵BG=2BP,BD=
1
2
BC=1,
∴DG=2x-1,
∵點G在線段CD上,
∴求G與D、C重合時x的值即可確定自變量x的取值范圍,
當(dāng)G與D點重合時,BG=
1
2
BC=1,∴2x-1=0,即x=
1
2

當(dāng)G與C點重合時,DG=1,∴2x-1=1,即x=1,
故x的取值范圍為
1
2
≤x≤1.

(2)解:∵AD⊥BC,GP⊥AB,
由勾股定理得:GP=
BG2-BP2
=
3
x,
∴∠ADC=∠GPB=90°,
∵∠PGB=∠PGB,
∴△EDG∽△BPG,
ED
BP
=
DG
PG
,
DE
x
=
2x-1
3
x
,
解得:DE=
2
3
3
x-
3
3

∵PF∥AC,
BP
AB
=
BF
BC
,
∴BP=BF=x,
∴DF=1-x,
∴s=
1
2
DE•DF=
1
2
•(
2
3
3
x-
3
3
)•(1-x)=-
3
3
x2+
3
2
x-
3
6
=-
3
3
(x-
3
4
)
2
+
3
48
,
s的最大值是
3
48
,
答:S與x之間的函數(shù)關(guān)系式是∴s=-
3
3
x2+
3
2
x-
3
6
,并求出S的最大值是
3
48


(3)解:相似,
∵∠BGP=30°,∠BPF=60°,
∴∠FPE=30°,
①當(dāng)∠FEP=90°時,
∴EF∥AB,
DE
AD
=
DF
BD

2
3
3
x-
3
3
3
=
1-x
1
,
解得:x=
4
5
,
②當(dāng)∠PFE=90°時,
∵△BPF是等邊三角形,
∴∠BFP=60°,
∴∠EFD=30°=∠PGD,
∴EF=EG,
∵AD⊥BC,
∴DF=DG,
即1-x=2x-1,
解得:x=
2
3
,
∴BP的長是
4
5
2
3
,
答:以P、E、F為頂點的三角形與△EDG相似,BP的長是
4
5
2
3
點評:本題主要考查對等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定,勾股定理,二次函數(shù)的最值等知識點的理解和掌握,綜合運用這些性質(zhì)進行計算是解此題的關(guān)鍵,題型較好,有一定的難度,用的數(shù)學(xué)思想是分類討論思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為1的等邊三角形ABC中,若將兩條含120°圓心角的
AOB
BOC
及邊AC所圍成的陰影部分的面積記為S,則S與△ABC面積的比等于( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為4的等邊三角形ABC中,AD是BC邊上的高,點E,F(xiàn)是AD上的兩點,則圖中陰影部分的面積是(  )
A、4
3
B、3
3
C、2
3
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為20cm的等邊三角形ABC紙片中,以頂點C為圓心,以此三角形的高為半徑畫弧分別交AC、BC于點D、E,則扇形CDE所圍的圓錐(不計接縫)的底圓半徑為( 。
A、
5
3
3
cm
B、
10
3
3
cm
C、5
3
cm
D、10
3
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長為2的等邊△ABC中,AD⊥BC,點P為邊AB上一個動點,過P點作PF∥AC交線段BD于點F,作PG⊥AB精英家教網(wǎng)交AD于點E,交線段CD于點G,設(shè)BP=x.
(1)試判斷BG與2BP的大小關(guān)系,并說明理由;
(2)用x的代數(shù)式表示線段DG的長,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)如圖,在邊長為1的等邊△OAB中,以邊AB為直徑作⊙D,以O(shè)為圓心OA長為半徑作圓O,C為半圓AB上不與A、B重合的一動點,射線AC交⊙O于點E,BC=a,AC=b.
(1)求證:AE=b+
3
a;
(2)求a+b的最大值;
(3)若m是關(guān)于x的方程:x2+
3
ax=b2+
3
ab的一個根,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案