精英家教網 > 初中數學 > 題目詳情

【題目】如圖,二次函數的圖象與軸正半軸相交于A、B兩點,軸相交于點C,對稱軸為直線OA=OC,則下列結論:①④關于的方程有一個根為其中正確的結論個數有( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

由二次函數圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號從而可判斷;由圖象可知當x=3y>0,可判斷;OAOCOA<1,可判斷;OAOC得到方程有一個根為-c,設另一根為x=2,解方程可得x=4+c即可判斷;從而可得出答案

由圖象開口向下,可知a<0,y軸的交點在x軸的下方可知c<0,又對稱軸方程為x=2,所以0,所以b>0,∴abc>0,正確;

由圖象可知當x=3,y>0,∴9a+3b+c>0,錯誤;

由圖象可知OA<1.

OAOC,∴OC<1,即﹣c<1,∴c>﹣1,正確;

OAOC,∴方程有一個根為-c,設另一根為x

對稱軸為直線x=2,∴=2,解得x=4+c正確;

綜上可知正確的結論有三個

故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,圓 O 的半徑為 1,過點 A(2,0)的直線與圓 O 相切于點 B, y 軸相交于點 C.

(1) AB 的長;

(2)求直線 AB 的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點PPCx軸于點C,交拋物線于點D

(1)

①求拋物線的解析式;

②當線段PD的長度最大時,求點P的坐標;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲乙兩位同學利用燈光下的影子來測量一路燈A的高度,如圖,當甲走到點C處時,乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點E處時,甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時的身高為1.75m,求路燈的高AB的長.(結果精確到0.1m

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場將每件進價為元的某種商品原來按每件元出售,一天可售出件.后來經過市場調查,發(fā)現這種商品單價每降低元,其銷量可增加件.

求商場經營該商品原來一天可獲利潤多少元?

若商場經營該商品一天要獲利潤元,并讓顧客得到實惠,則每件商品應降價多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請認真閱讀下面的數學小探究系列,完成所提出的問題:

(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,過點D做BC邊上的高DE,則DE與BC的數量關系是   ,△BCD的面積為   ;

(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含a的式子表示△BCD的面積,并說明理由;

(3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學習小組做摸球實驗.將球攪勻后從中隨機摸出一個球,記下顏色,再把它放回袋中,不斷重復,下表是活動進行中記下的一組數據

摸球的次數

100

150

200

500

800

1000

摸到白球的次數

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請你估計,當n很大時,摸到白球的頻率將會接近 (精確到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點P是這個菱形內部或邊上的一點.若以P,B,C為頂點的三角形是等腰三角形,則P,A(P,A兩點不重合)兩點間的最短距離為______cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

同步練習冊答案