【題目】下列各小題中,都有OE平分∠AOC,OF平分∠BOC.
(1)如圖,若點(diǎn)A.O.B在一條直線上,則∠AOB與∠EOF的數(shù)量關(guān)系是:∠AOB=_____∠EOF.
(2)如圖,若點(diǎn)A.O.B不在一條直線上,則題(1)中的數(shù)量關(guān)系是否成立?請(qǐng)說明理由.
(3)如圖,若OA在∠BOC的內(nèi)部,則題(1)中的數(shù)量關(guān)系是否仍成立?請(qǐng)說明理由
【答案】(1)2(2)成立,理由見解析(3)成立,理由見解析
【解析】
(1)根據(jù)角平分線的定義可得,∠AOB=2∠EOF;
(2)根據(jù)角平分線的定義求得∠EOF=∠AOB;
(3)根據(jù)角平分線的定義求得∠EOF=∠COF∠EOC=∠AOB.
(1)
∵OE平分∠AOC,OF平分∠BOC
∴∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)
=∠AOB
∴∠AOB=2∠EOF.
(2)成立,理由是:
因?yàn)?/span>OE平分∠AOC,所以∠EOC=∠AOC
因?yàn)?/span>OF平分∠BOC,所以∠COF=∠BOC
所以∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB
(3)成立
理由是:因?yàn)?/span>OE平分∠AOC,所以∠EOC=∠AOC
因?yàn)?/span>OF平分∠BOC,所以∠COF=∠BOC
所以∠EOF=∠COF∠EOC=∠BOC∠AOC
=(∠BOC∠AOC)
=∠AOB
所以∠AOB=2∠EOF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A、B,AB=2,
(1)求k的值;
(2)若反比例函數(shù)y=的圖象上存在一點(diǎn)C,則當(dāng)△ABC為直角三角形,請(qǐng)直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,一蔬菜經(jīng)營(yíng)戶用114元從蔬菜批發(fā)市場(chǎng)購(gòu)進(jìn)黃瓜和土豆共40kg到菜市場(chǎng)去賣,黃瓜和土豆這天的批發(fā)價(jià)好零售價(jià)(單位:元/kg)如下表所示:
品名 | 批發(fā)價(jià) | 零售價(jià) |
黃瓜 | 2.4 | 4 |
土豆 | 3 | 5 |
(1)他當(dāng)天購(gòu)進(jìn)黃瓜和土豆各多少千克?
(2)如果黃瓜和土豆全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價(jià)為300元,乙種商品每件售價(jià)為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:
方案一:買一件甲種商品就贈(zèng)送一件乙種商品;
方案二:按購(gòu)買金額打八折付款.
某公司為獎(jiǎng)勵(lì)員工,購(gòu)買了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫出優(yōu)惠方案一購(gòu)買費(fèi)用y1(元)、優(yōu)惠方案二購(gòu)買費(fèi)用y2(元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購(gòu)買了m件甲種商品,其余按方案二的優(yōu)惠辦法購(gòu)買.請(qǐng)你寫出總費(fèi)用w與m之間的關(guān)系式;利用w與m之間的關(guān)系式說明怎樣購(gòu)買最實(shí)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,Rt△ABC中,∠BAC=90°,點(diǎn)D是線段AC的中點(diǎn),連接BD并延長(zhǎng)至點(diǎn)E,使BE=2BD.連接AE,CE.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2所示,將三角板頂點(diǎn)M放在AE邊上,兩條直角邊分別過點(diǎn)B和點(diǎn)C,若∠MEC=∠EMC,BM交AC于點(diǎn)N.求證:△ABN≌△MCN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷往“一帶一路”沿線國(guó)家和地區(qū). 已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬(wàn)元,則至少銷售甲種商品多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長(zhǎng).
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識(shí)進(jìn)行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點(diǎn)睛:直徑所對(duì)的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點(diǎn).過點(diǎn)B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn),且y1≥y2,求實(shí)數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表給出了代數(shù)式﹣x2+bx+c與x的一些對(duì)應(yīng)值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
﹣x2+bx+c | … | 5 | n | c | 2 | ﹣3 | ﹣10 | … |
(1)根據(jù)表格中的數(shù)據(jù),確定b,c,n的值;
(2)設(shè)y=﹣x2+bx+c,直接寫出0≤x≤2時(shí)y的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com