【題目】若把不等式組的解集在數(shù)軸上表示出來,則其對應(yīng)的圖形為

A. 長方形 B. 線段 C. 射線 D. 直線

【答案】B

【解析】

解一元一次不等式組,先求出不等式組中每一個(gè)不等式的解集,再利用口訣求出這些解集的公共部分:同大取大,同小取小,大小小大中間找,大大小小解不了(無解)。因此,

不等式組的解集在數(shù)軸上表示的方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(>,向右畫;<,向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè)。在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;,要用空心圓點(diǎn)表示。因此,不等式組的解集在數(shù)軸上表示為:

解集對應(yīng)的圖形是線段。故選B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3、…在射線ON上,點(diǎn)B1、B2、B3、…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均為等邊三角形,若OA1=1,則△A9B9A10的邊長為( 。

A. 32 B. 64 C. 128 D. 256

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解答過程:(1)如圖甲,AB∥CD,探索∠P與∠A,∠C之間的關(guān)系.

(2)如圖乙和圖丙,AB∥CD,請根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料.

點(diǎn)M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對值叫做點(diǎn)M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點(diǎn)A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  ;

(2)|1﹣(﹣4)|表示哪兩點(diǎn)的距離?

(3)點(diǎn)P為數(shù)軸上一點(diǎn),其表示的數(shù)為x,用含有x的式子表示BP=  ,當(dāng)BP=4時(shí),x=  ;當(dāng)|x﹣3|+|x+2|的值最小時(shí),x的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級收費(fèi)制,即每月用水量不超過15(15)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過15噸時(shí),超過部分每噸按市場調(diào)節(jié)價(jià)收費(fèi).小明家1月份用水23噸,交水費(fèi)35元,2月份用水19噸,交水費(fèi)25元.

(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)與市場調(diào)節(jié)價(jià)分別是多少;

(2)小明家3月份用水24噸,他家應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n為大于1的整數(shù))

(1)計(jì)算a15的值;

(2)通過拼圖你發(fā)現(xiàn)前三個(gè)圖形的面積之和與第四個(gè)正方形的面積之間有什么關(guān)系:

__________________________________(用含a、b的式子表示);

(3)根據(jù)(2)中結(jié)論,探究an=(n+1)2-(n-1)2是否為4的倍數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點(diǎn)P在射線AC上,作點(diǎn)P關(guān)于直線CD的對稱點(diǎn)Q,作射線BQ交射線DC于點(diǎn)E,連接BP.

(1)當(dāng)點(diǎn)P在線段AC上時(shí),如圖1.

依題意補(bǔ)全圖1;

EQ=BP,則∠PBE的度數(shù)為   ,并證明;

(2)當(dāng)點(diǎn)P在線段AC的延長線上時(shí),如圖2.若EQ=BP,正方形ABCD的邊長為1,請寫出求BE長的思路.(可以不寫出計(jì)算結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地在山區(qū)修建高速公路時(shí)需挖通一條隧道,為估計(jì)這條隧道的長度需測出這座山A、B間的距離,結(jié)合所學(xué)知識或方法,設(shè)計(jì)測量方案你能給出什么好的方法嗎?

查看答案和解析>>

同步練習(xí)冊答案