【題目】計(jì)算:

(1)(2x5)(3x2) (2)(2a3b)(2a3b)(a3b)2;

(3) (÷(3xy); (4)(abc)(abc)

【答案】(1)6x2-11x-10;(2)3a2+6ab-18b2(3);(4)a2+2ab+b2-c2.

【解析】

(1)根據(jù)多項(xiàng)式乘多項(xiàng)式法則進(jìn)行計(jì)算即可;

(2)先利用平方差公式、完全平方公式進(jìn)行展開,然后再合并同類項(xiàng)即可;

(3)根據(jù)多項(xiàng)式除以單項(xiàng)式法則進(jìn)行計(jì)算即可;

(4)原式變形為[(a+b)-c][(a+b)+c],先利用平方差公式然后再利用完全平方公式進(jìn)行展開即可.

(1)原式=6x2+4x-15x-10=6x2-11x-10

(2)原式=4a2-9b2-(a2-6ab+9b2)=4a2-9b2-a2+6ab-9b2=3a2+6ab-18b2;

(3)原式=;

(4)原式=[(a+b)-c][(a+b)+c]

=(a+b)2-c2

=a2+2ab+b2-c2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“倡導(dǎo)全民閱讀”、“推動(dòng)國民素質(zhì)和社會(huì)文明程度顯著提高”已成為“十三五”時(shí)期的重要工作.教育主管部門對某學(xué)校青年學(xué)校青年教師2016年度閱讀情況進(jìn)行了問卷調(diào)查,并將收集的數(shù)據(jù)統(tǒng)計(jì)如表,根據(jù)表中的信息判斷,下列結(jié)論錯(cuò)誤的是(  )

A. 該學(xué)校中參與調(diào)查的青年教師人數(shù)為40人

B. 該學(xué)校中青年教師2016年平均每人閱讀8本書

C. 該學(xué)校中青年教師2016年度看書數(shù)量的中位數(shù)為4本

D. 該學(xué)校中青年教師2016年度看書數(shù)量的眾數(shù)為4本

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列推理及所注明的理由都正確的是:(

A. 因?yàn)?/span>DEBC,所以∠1=∠C(同位角相等,兩直線平行)

B. 因?yàn)椤?/span>2=∠3,所以DEBC(兩直線平行,內(nèi)錯(cuò)角相等)

C. 因?yàn)?/span>DEBC,所以∠2=∠3(兩直線平行,內(nèi)錯(cuò)角相等)

D. 因?yàn)椤?/span>1=∠C,所以DEBC(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y= x的圖象經(jīng)過點(diǎn)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y= 的圖象也經(jīng)過點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)的圖象上,過點(diǎn)B作BC∥x軸,交y軸于點(diǎn)C,且AC=AB.求:

(1)這個(gè)反比例函數(shù)的解析式;
(2)直線AB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式(x2+mxy+3)﹣(3x2y+1nx2).

1)若多項(xiàng)式的值與字母x的取值無關(guān),求m,n的值;

2)先化簡多項(xiàng)式3m2mnn2)﹣(3m2+mn+n2),再求它的值;

3)在(1)的條件下,求(n+m2+2n+m2+3n+m2++9n+m2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是一個(gè)長為2x、寬為2y的長方形,沿圖中虛線用剪刀剪成四個(gè)完全相同的小長方形,然后按圖2所示拼成一個(gè)正方形.

(1)你認(rèn)為圖2中的陰影部分的正方形的邊長等于
(2)試用兩種不同的方法求圖2中陰影部分的面積.
方法1: 方法2:
(3)根據(jù)圖2你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(x+y)2,(x-y)2,4xy

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
x+y=4,xy=3,則(x-y)2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEBF,AC平分∠BAD,且交BF于點(diǎn)C,BD平分∠ABC,且交AE于點(diǎn)D,連接CD,求證:

1ACBD;

2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題【再現(xiàn)】如圖①,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),可以得到:DE∥BC,且DE= BC.(不需要證明)

(1)【探究】如圖②,在四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),判斷四邊形EFGH的形狀,并加以證明.

(2)【應(yīng)用】在(1)【探究】的條件下,四邊形ABCD中,滿足什么條件時(shí),四邊形EFGH是菱形?你添加的條件是: . (只添加一個(gè)條件)
(3)如圖③,在四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),對角線AC,BD相交于點(diǎn)O.若AO=OC,四邊形ABCD面積為5,則陰影部分圖形的面積和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,則 的值為

查看答案和解析>>

同步練習(xí)冊答案