如圖,△ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標;
(2)以原點O為位似中心,在原點的另一側畫出△A2B2C2,使,并寫出點A2的坐標。
詳見分析
試題分析:(1)根據(jù)坐標系找出點A、B、C關于x軸對應點A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出點A1的坐標即可;
(2)利用在原點的另一側畫出△A2B2C2,使,原三角形的各頂點坐標都乘以-2,得出對應點的坐標即可得出圖形.
(1)如圖所示,A1(1,-3)

(2)如圖所示,A2(-2,-6).
本題涉及了基本作圖,作圖題是初中數(shù)學學習中的重要題型,在中考中比較常見,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個用足夠長的的細鐵絲制作的直角的頂點D放在直角三角板ABC的斜邊AB上,再將該直角繞點D旋轉,并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點。
問題探究:(1)在旋轉過程中,
①如圖2,當AD=BD時,線段DP、DQ有何數(shù)量關系?并說明理由。
②如圖3,當AD=2BD時,線段DP、DQ有何數(shù)量關系?并說明理由。
③根據(jù)你對①、②的探究結果,試寫出當AD=nBD時,DP、DQ滿足的數(shù)量關系為_______________(直接寫出結論,不必證明)
(2)當AD=BD時,若AB=20,連接PQ,設△DPQ的面積為S,在旋轉過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由。

圖1              圖2                 圖3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如果一個圖形經過分割,能成為若干個與自身相似的圖形,我們稱它為“相似分割的圖形”,如圖所示的等腰直角三角形和矩形就是能相似分割的圖形.

(1)你能否再各舉出一個 “能相似分割”的三角形和四邊形?
(2)一般的三角形是否是“能相似分割的圖形”?如果是請給出一種分割方案并畫出圖形,否則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖為中學生學習報按比例縮小的示意圖,它的寬度為39.1厘米,那么它的長大約在( 。
A.47厘米至51厘米之間B.51厘米至55厘米之間
C.55厘米至59厘米之間D.59厘米至63厘米之間

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,D、E分別是△ABC邊AB、BC上的點,AD=2BD,BE=CE,設△ADF的面積為S1,△CEF的面積為S2,若S△ABC=9,則S1-S2=(  )

A、     B、1    C、     D、2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

,相似比為1:2,則的面積的比為(  )
A.1:2B.2:1C.1:4D.4:1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若兩個等邊三角形的邊長分別為a與3a,則它們的面積之比為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

數(shù)學課上,張老師出示圖1和下面的條件:如圖1,兩個等腰直角三角板ABC和DEF有一條邊在同一條直線l上,DE=2,AB=1.將直線EB繞點E逆時針旋轉45°,交直線AD于點M.將圖1中的三角板ABC沿直線l向右平移,設C、E兩點間的距離為k.
解答問題:
(1)①當點C與點F重合時,如圖2所示,可得的值為       ;
②在平移過程中,的值為           (用含k的代數(shù)式表示);
(2)將圖2中的三角板ABC繞點C逆時針旋轉,原題中的其他條件保持不變.當點A落在線段DF上時,如圖3所示,請補全圖形,計算的值;
(3)將圖1中的三角板ABC繞點C逆時針旋轉α度,0<α≤90,原題中的其他條件保持不變.計算 的值(用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案