【題目】如圖,已知矩形ABCD,點(diǎn)E為AD上一點(diǎn),BE ⊥ AC于F點(diǎn).
(1)若AE=AD,△AEF的面積為1時(shí),求△ABC的面積;
(2)若AD = 4,tan∠EAF =,求AF的長(zhǎng);
(3)若tan∠EAF =,連接DF,證明DF=AB.
【答案】(1)12;(2);(3)見(jiàn)解析.
【解析】分析:證明三角形相似,根據(jù)相似三角形的面積比等于相似比的平方即可求出.
利用正切得到 AB = DC = 2,tan∠ABF = ,即BF=2AF,用勾股定理即可求出的長(zhǎng).
∠EAF =∠ABF,tan∠EAF =,可以得到,可以推出E為AD中點(diǎn),
延長(zhǎng)BE、CD交于點(diǎn)G,易證△ABE ≌△DGE,即可證明.
詳解:(1)∵四邊形ABCD是矩形
∴AD = BC,,
∴ ,
∵S△AEF = 1,
∴S△CBF = 9S△AEF = 9,S△ABF = 3S△AEF = 3,
∴S△ABC = S△ABF + S△CBF = 12.
(2)∵AD = 4,tan∠EAF =,
∴
∴AB = DC = 2,
∵∠EAF + ∠BAF = 90°,∠BAF + ∠ABF = 90° ,
∴∠EAF = ∠ABF,
∴ tan∠ABF = ,即BF=2AF,
∵AF2 + BF2 = AB2,
∴
∴AF =.
(3)∵∠EAF =∠ABF,tan∠EAF =,
∴,,
∴,
∴ ,
∴E為AD中點(diǎn),
延長(zhǎng)BE、CD交于點(diǎn)G,
易證△ABE ≌ △DGE,
∴DG = AB = DC,
∴DF = DC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD中,AB=2,BC=.
(1)利用尺規(guī)作∠ABC的平分線BE,交AD于點(diǎn)E;(保留作圖痕跡,不寫(xiě)作法)
(2)記,先化簡(jiǎn),再求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列一元二次方程化為一般式,并寫(xiě)出方程中的各項(xiàng)與各項(xiàng)的系數(shù)。
(1); (2);
(3); (4)。(是已知數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,拋物線y = ax2 + bx + c 交x軸于A(4,0),C(-1,0)兩點(diǎn),交y軸于點(diǎn)B(0,3) .
(1)求拋物線y = ax2 + bx + c的解析式;
(2)點(diǎn)P是拋物線(在點(diǎn)A與點(diǎn)B之間的部分)上的點(diǎn),求△ABP的面積最大值;
(3)若點(diǎn)M在y軸上,且△ABM為等腰三角形,請(qǐng)直接寫(xiě)出M點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C三點(diǎn)在同一直線上,AB=16cm,BC=10cm,M、N分別是AB、BC的中點(diǎn),則MN等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B在數(shù)軸上表示的數(shù)如圖所示. 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸向右以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)B,再?gòu)狞c(diǎn)B以同樣的速度運(yùn)動(dòng)到點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,解答下列問(wèn)題.
(1)當(dāng)t=2時(shí),AP= 個(gè)單位長(zhǎng)度,當(dāng)t=6時(shí),AP= 個(gè)單位長(zhǎng)度;
(2)直接寫(xiě)出整個(gè)運(yùn)動(dòng)過(guò)程中AP的長(zhǎng)度(用含t的代數(shù)式表示);
(3)當(dāng)AP=6個(gè)單位長(zhǎng)度時(shí),求t的值;
(4)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段AB的3等分點(diǎn)時(shí),t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)都從A地出發(fā),在路程為360千米的同一道路上駛向B地.甲車(chē)先出發(fā)勻速駛向B地.10分鐘后乙車(chē)出發(fā),乙車(chē)勻速行駛3小時(shí)后在途中的配貨站裝貨耗時(shí)20分鐘.由于滿(mǎn)載貨物,乙車(chē)速度較之前減少了40千米/時(shí).乙車(chē)在整個(gè)途中共耗時(shí)小時(shí),結(jié)果與甲車(chē)同時(shí)到達(dá)B地.
(1)甲車(chē)的速度為 千米/時(shí);
(2)求乙車(chē)裝貨后行駛的速度;
(3)乙車(chē)出發(fā) 小時(shí)與甲車(chē)相距10千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,的半徑是5,點(diǎn)A為上一點(diǎn),軸于點(diǎn)軸于點(diǎn)C,若四邊形ABOC的面積為12,寫(xiě)出一個(gè)符合條件的點(diǎn)A的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上,若A、B、C三點(diǎn)滿(mǎn)足AC=2CB,則稱(chēng)C是線段AB的相關(guān)點(diǎn).當(dāng)點(diǎn)C在線段AB上時(shí),稱(chēng)C為線段AB的內(nèi)相關(guān)點(diǎn),當(dāng)點(diǎn)C在線段AB延長(zhǎng)線上時(shí),稱(chēng)C為線段AB的外相關(guān)點(diǎn).
如圖1,當(dāng)A對(duì)應(yīng)的數(shù)為5,B對(duì)應(yīng)的數(shù)為2時(shí),則表示數(shù)3的點(diǎn)C是線段AB的內(nèi)相關(guān)點(diǎn),表示數(shù)-1的點(diǎn)D是線段AB的外相關(guān)點(diǎn).
(1)如圖2,A、B表示的數(shù)分別為5和-1,則線段AB的內(nèi)相關(guān)點(diǎn)表示的數(shù)為______,線段AB的外相關(guān)點(diǎn)表示的數(shù)為________.
(2)在(1)的條件下,點(diǎn)P、點(diǎn)Q分別從A點(diǎn)、B點(diǎn)同時(shí)出發(fā),點(diǎn)P、點(diǎn)Q分別以3個(gè)單位/秒和2個(gè)單位/秒的速度向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)PQ=7時(shí),求t值.
②設(shè)線段PQ的內(nèi)相關(guān)點(diǎn)為M,外相關(guān)點(diǎn)為N.直接寫(xiě)出M、N所對(duì)應(yīng)的數(shù)為相反數(shù)時(shí)t的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com