如圖,已知反比例函數(shù)y1=(m≠0)的圖象經(jīng)過(guò)點(diǎn)A(-2,1),一次函數(shù)y2=kx+b(k≠0)的圖象經(jīng)過(guò)點(diǎn)C(0,3)與點(diǎn)A,且與反比例函數(shù)的圖象相交于另一點(diǎn)B.
(1)分別求出反比例函數(shù)與一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).

【答案】分析:(1)反比例函數(shù)y1=的圖象經(jīng)過(guò)點(diǎn)A(-2,1),代入就可求出解析式,同理一次函數(shù)經(jīng)過(guò)點(diǎn)A(-2,1),C(0,3),根據(jù)待定系數(shù)法就可求出函數(shù)解析式;
(2)求兩個(gè)函數(shù)的交點(diǎn)就是解兩個(gè)函數(shù)解析式組成的方程組.
解答:解:(1)∵點(diǎn)A(-2,1)在反比例函數(shù)y1=的圖象上,
,即m=-2,
又A(-2,1),C(0,3)在一次函數(shù)y2=kx+b圖象上,
,
∴反比例函數(shù)與一次函數(shù)解析式分別為:y=-與y=x+3;

(2)由得x+3=-,即x2+3x+2=0,
∴x=-2或x=-1于是,
∴點(diǎn)B的坐標(biāo)為(-1,2).
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,以及函數(shù)圖象上的點(diǎn)與解析式的關(guān)系,圖象上的點(diǎn)一定滿足函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過(guò)A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個(gè)函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過(guò)點(diǎn)A(2,m),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過(guò)點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過(guò)第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長(zhǎng);
(3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請(qǐng)求P點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案