【題目】如圖,在中,點(diǎn)E上的任意一點(diǎn),連接,將沿BE折疊,使點(diǎn)A落在點(diǎn)D處,連接,若是直角三角形,則的長(zhǎng)為__________


【答案】

【解析】

如圖,由題意只有∠ACD可能為90°.過點(diǎn)BBTCDCD的延長(zhǎng)線于T.由翻折可知:BDAB8,AEDE,設(shè)AEDEx,則EC6x,由△BTD∽△DCE,可得CD,在RtCDE中,根據(jù)DECDEC,構(gòu)建方程求出x即可解決問題.

解:如圖,由題意只有∠ACD可能為90°.過點(diǎn)BBTCDCD的延長(zhǎng)線于T

由翻折可知:BDAB8AEDE,

設(shè)AEDEx,則EC6x,
∵∠T=∠DCE=∠BDE=∠BAC90°,
∴四邊形ABTC是矩形,
BTAC6
∵∠BDT+∠TBD90°,∠BDT+∠CDE90°,
∴∠TBD=∠CDE,
∴△BTD∽△DCE,

,
CD,

RtCDE中,DECDEC,

解得x(舍去)

AE,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)E是正方形ABCDCD上任意點(diǎn),以DE為邊作正方形DEFG,連接BF.點(diǎn)M是線段BF中點(diǎn),射線EMBC交于點(diǎn)H,連接CM

(1)請(qǐng)直接寫出CMEM的數(shù)量關(guān)系和位置關(guān)系:__________;

(2)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)E、G恰好分別落在線段AD、CD上,如圖2所示,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說明理由.

(3)DG,AB4

①把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°,此時(shí)點(diǎn)F恰好落在線段CD上,連接EM,如圖3所示,其他條件不變,計(jì)算EM的長(zhǎng)度;

②若把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一周,請(qǐng)直接寫出EM的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店用3600元按批發(fā)價(jià)購(gòu)買了一批花卉.若將批發(fā)價(jià)降低10%,則可以多購(gòu)買該花卉20.市場(chǎng)調(diào)查反映,該花卉每盆售價(jià)25元時(shí),每天可賣出25.若調(diào)整價(jià)格,每盆花卉每漲價(jià)1元,每天要少賣出1.

1)該花卉每盆批發(fā)價(jià)是多少元?

2)若每天所得的銷售利潤(rùn)為200元時(shí),且銷量盡可能大,該花卉每盆售價(jià)是多少元?

3)為了讓利給顧客,該花店決定每盆花卉漲價(jià)不超過5元,問該花卉一天最大的銷售利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用一段長(zhǎng)為30m的籬笆圍成一個(gè)一邊靠墻的矩形菜園(矩形ABCD),墻長(zhǎng)為22m,這個(gè)矩形的長(zhǎng)ABxm,菜園的面積為Sm2,且ABAD

1)求Sx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)若要圍建的菜園為100m2時(shí),求該萊園的長(zhǎng).

3)當(dāng)該菜園的長(zhǎng)為多少m時(shí),菜園的面積最大?最大面積是多少m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA,PBO的切線,A,B為切點(diǎn),ACO的直徑.

1)若∠BAC=25°,求∠P的度數(shù);

2)若∠P=60°,PA=2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖1,已知點(diǎn)為線段上一點(diǎn),分別以線段為直角邊作兩個(gè)等腰直角三角形,,連接,線段之間的數(shù)量關(guān)系為__;位置關(guān)系為_________

2)拓展研究:如圖2,把繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),線段交于點(diǎn)F,則之間的關(guān)系是否仍然成立,說明理由;

3)解決問題:如圖3,已知,連接,把線段AB繞點(diǎn)A旋轉(zhuǎn),若,請(qǐng)直接寫出線段的取值范圍.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)與x軸交于點(diǎn)A(﹣2,0)、B4,0),與y軸交于點(diǎn)C,且OC2OA

1)該拋物線的解析式為   

2)直線ykx+lk0)與y軸交于點(diǎn)D,與直線BC交于點(diǎn)M,與拋物線上直線BC上方部分交于點(diǎn)P,設(shè)m,求m的最大值及此時(shí)點(diǎn)P的坐標(biāo);

3)若點(diǎn)D、P為(2)中求出的點(diǎn),點(diǎn)Qx軸的一個(gè)動(dòng)點(diǎn),點(diǎn)N為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)P、D、QN為頂點(diǎn)的四邊形為矩形時(shí),直接寫出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了豐富學(xué)生課余生活,開展了第二課堂活動(dòng),推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學(xué)校規(guī)定:每個(gè)學(xué)生都必須報(bào)名且只能選擇其中的一個(gè)課程.學(xué)校隨機(jī)抽查了部分學(xué)生,對(duì)他們選擇的課程情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息解決下列問題:

1)這次抽查的學(xué)生人數(shù)是多少人?

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)求扇形統(tǒng)計(jì)圖中課程所對(duì)應(yīng)扇形的圓心角的度數(shù).

4)如果該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校選擇課程的學(xué)生約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201912月以來(lái),湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實(shí)該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強(qiáng).為了有效地避免交叉感染,需要采取以下防護(hù)措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹(jǐn)慎吃.某公司為了解員工對(duì)防護(hù)措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網(wǎng)上問卷調(diào)查的方式進(jìn)行了隨機(jī)抽樣調(diào)查(每名員工必須且只能選擇一項(xiàng)),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)上面的信息,解答下列問題

1)本次共調(diào)查了_______名員工,條形統(tǒng)計(jì)圖中________

2)若該公司共有員工1000名,請(qǐng)你估計(jì)不了解防護(hù)措施的人數(shù);

3)在調(diào)查中,發(fā)現(xiàn)有4名員工對(duì)防護(hù)措施很了解,其中有3名男員工、1名女員工.若準(zhǔn)備從他們中隨機(jī)抽取2名,讓其在公司群內(nèi)普及防護(hù)措施,求恰好抽中一男一女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案