【題目】如圖,在中,,,,點是邊上一動點(不與點重合),過點作交邊于點,將沿直線翻折,點落在射線上的點處,當(dāng)為直角三角形時,求的長.
【答案】1或2
【解析】
由題意根據(jù)翻折的性質(zhì)以及勾股定理和特殊銳角三角函數(shù)值進行綜合分析求解.
解:∵Rt△ABC中,∠ACB=90°,∠B=30°,
∴,
∵∠B=30°,DE⊥BC,
∴∠BED=60°,
由翻折的性質(zhì)可知:∠BED=∠FED=60°,
∴∠AEF=60°,
∵△AEF為直角三角形,
∴∠EAF=30°,
∴AE=2EF,
由翻折的性質(zhì)可知:BE=EF,
∴AB=3BE,
∴,
當(dāng)點F在BC的延長線上時.
∵△AEF為直角三角形,
∴∠EAF=90°,
∴∠EFA=30°,
∴∠EFD=∠EFA,
又∵ED⊥BF,EA⊥AF,
∴AE=DE,
∵BC=3,∠ACB=90°,∠B=30°,
∴,
設(shè),
∵DE∥AC,
∴,
解得,
∴,
∴BD的長為1或2時,△AEF為直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形中,,是中點,平分.連接.
(1)是否平分?請證明你的結(jié)論;
(2)線段與有怎樣的位置關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.
⑴求拋物線的解析式及點C的坐標;
⑵求證:△ABC是直角三角形;
⑶若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O(shè),M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)y=的圖象于點B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,指出點P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知ABCD是一個以AD為直徑的圓內(nèi)接四邊形,分別延長AB和DC,它們相交于P,若∠APD=60°,AB=5,PC=4,則⊙O的面積為( 。
A. 25π B. 16π C. 15π D. 13π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學(xué)利用尺規(guī)按以下步驟作圖:①以點A為圓心,以任意長為半徑作弧交AN于點C,交AB于點D;②分別以C,D為圓心,以大于CD長為半徑作弧,兩弧在∠NAB內(nèi)交于點E;③作射線AE交PQ于點F.若AB=2,∠ABP=60°,則線段AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=x+3上,若N點在第二象限內(nèi),則tan∠AON的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com