【題目】某地區(qū)的手機收費如下兩種方式(接聽均免費),用戶可任選其一:

A:月租費0元,撥打電話計費0.15/

B:月租費15元,撥打電話計費0.1/

1)某用戶某月打手機100分鐘,請計算兩種方式各繳費多少元?

2)某用戶某月打手機x分鐘,請你寫出兩種方式下該用戶應繳付的費用?

3)若某用戶估計一個月內(nèi)打手機15小時,你認為哪種方式更合算?

【答案】(1) 方式A收費15(元),方式B收費25(元);(2) 方式A收費:0.15x,方式B收費:15+0.1x;(3) 方式B更合算.

【解析】

(1)根據(jù)題意可以求出某用戶某月打手機100分鐘,兩種方式各繳費多少;

(2)根據(jù)題意可以用代數(shù)式表示出某用戶某月打手機x分鐘,兩種方式下該用戶應繳付的費用;

(3)根據(jù)(2)中代數(shù)式可以求得打手機15小時兩種方式的繳費情況,然后比較大小即可解答本題.

解:(1)由題意可得,

方式A收費:0.15×100=15(元),

方式B收費:15+0.1×100=25(元);

(2)由題意可得,

方式A收費:0.15x,

方式B收費:15+0.1x;

(3)當打手機15小時時,

方式A收費:0.15×(15×60)=135(元),

方式B收費:15+0.1×(15×60)=105(元),

105<135,

∴方式B更合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將45°的∠AOB按下面的方式放置在一把刻度尺上:頂點O與尺下沿的端點重合,OA與尺下沿重合,OB與尺上沿的交點B在尺上的讀數(shù)恰為2cm.若按相同的方式將37°的∠AOC放置在該刻度尺上,則OC與尺上沿的交點C在尺上的讀數(shù)約為cm.(結果精確到0.1cm,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,對角線AC的中點為O,過點O作AC的垂線分別與AD、BC相交于點E、F,連接AF.求證:AE=AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請直接寫出與點B關于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°.畫出對應的△A′B′C′圖形,直接寫出點A的對應點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N,設∠AEM=α(0°<α<90°),給出下列四個結論: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④SEMN=
上述結論中正確的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1 , l2 , 過點(1,0)作x軸的垂線交l1于點A1 , 過點A1作y軸的垂線交l2于點A2 , 過點A2作x軸的垂線交l1于點A3 , 過點A3作y軸的垂線交l2于點A4 , …依次進行下去,則點A2017的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y= (k≠0)的圖象經(jīng)過(3,﹣1),則當1<y<3時,自變量x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為原點,平行于x軸的直線與拋物線L:y=ax2相交于A,B兩點(點B在第一象限),點D在AB的延長線上.

(1)已知a=1,點B的縱坐標為2.
①如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,求AC的長.
②如圖2,若BD= AB,過點B,D的拋物線L2 , 其頂點M在x軸上,求該拋物線的函數(shù)表達式.
(2)如圖3,若BD=AB,過O,B,D三點的拋物線L3 , 頂點為P,對應函數(shù)的二次項系數(shù)為a3 , 過點P作PE∥x軸,交拋物線L于E,F(xiàn)兩點,求 的值,并直接寫出 的值.

查看答案和解析>>

同步練習冊答案