【題目】如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的函數(shù)關(guān)系圖象,其中M為曲線部分的最低點(diǎn)下列說(shuō)法錯(cuò)誤的是( 。
A. △ABC是等腰三角形B. AC邊上的高為4
C. △ABC的周長(zhǎng)為16D. △ABC的面積為10
【答案】D
【解析】
由圖1看到,點(diǎn)P從B運(yùn)動(dòng)到A的過(guò)程中,y=BP先從0開(kāi)始增大,到達(dá)點(diǎn)C時(shí)達(dá)到最大,對(duì)應(yīng)圖2可得此時(shí)y=5,即BC=5;點(diǎn)P從C運(yùn)動(dòng)到A的過(guò)程中,y=BP先減小,到達(dá)BP⊥AC時(shí)達(dá)到最小,對(duì)應(yīng)圖2可得此時(shí)BP=4;而后BP又開(kāi)始增大,到達(dá)點(diǎn)A時(shí)達(dá)到最大y=5,即BA=5,所以△ABC為等腰三角形.作AC邊上的高BD=4,即能求得AD=CD=3,即AC=6,再求得△ABC面積.
解:由圖1看到,點(diǎn)P從B運(yùn)動(dòng)到A的過(guò)程中,y=BP先從0開(kāi)始增大,到達(dá)點(diǎn)C時(shí)達(dá)到最大,對(duì)應(yīng)圖2可得此時(shí)y=5,即BC=5;點(diǎn)P從C運(yùn)動(dòng)到A的過(guò)程中,y=BP先減小,到達(dá)BP⊥AC時(shí)達(dá)到最小,對(duì)應(yīng)圖2可得此時(shí)BP=4;而后BP又開(kāi)始增大,到達(dá)點(diǎn)A時(shí)達(dá)到最大y=5,即BA=5,所以△ABC為等腰三角形.
由圖形和圖象可得BC=BA=5,BP⊥AC時(shí),BP=4
過(guò)點(diǎn)B作BD⊥AC于D,則BD=4
∴AD=CD=,
∴AC=6,
∴△ABC的周長(zhǎng)為:5+5+6=16,
∴S△ABC=ACBD=×6×4=12
故選項(xiàng)A、B、C正確,選項(xiàng)D錯(cuò)誤.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,拋物線C1:y=ax2﹣2x﹣3與拋物線C2:y=x2+mx+n關(guān)于y軸對(duì)稱(chēng),C2與x軸交于A、B兩點(diǎn),其中點(diǎn)A在點(diǎn)B的左側(cè).
(1)求拋物線C1,C2的函數(shù)表達(dá)式;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)在拋物線C1上是否存在一點(diǎn)P,在拋物線C2上是否存在一點(diǎn)Q,使得以AB為邊,且以A、B、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長(zhǎng).(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)P作PA,PB,分別與以OA為半徑的半圓切于A,B,延長(zhǎng)AO交切線PB于點(diǎn)C,交半圓與于點(diǎn)D.
(1)若PC=5,AC=4,求BC的長(zhǎng);
(2)設(shè)DC:AD=1:2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹(shù)新風(fēng)、做文明中學(xué)生”號(hào)召,某校開(kāi)展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛(ài)老人”、“義務(wù)植樹(shù)”、“社區(qū)服務(wù)”等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=-x+2分別交x軸、y軸于點(diǎn)A、B,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B.點(diǎn)P是x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線分別交拋物線和直線AB于點(diǎn)E和點(diǎn)F.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)點(diǎn)A的坐標(biāo)為 .
(2)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.
(3)點(diǎn)P在線段OA上時(shí),若以B、E、F為頂點(diǎn)的三角形與△FPA相似,求m的值.
(4)若E、F、P三個(gè)點(diǎn)中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),稱(chēng)E、F、P三點(diǎn)為“共諧點(diǎn)”.直接寫(xiě)出E、F、P三點(diǎn)成為“共諧點(diǎn)”時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A、B兩點(diǎn)的縱坐標(biāo)分別為3,1,反比例函數(shù)y=的圖象經(jīng)過(guò)A,B兩點(diǎn),則點(diǎn)D的坐標(biāo)為( )
A. (2﹣1,3)B. (2+1,3)
C. (2﹣1,3)D. (2+1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某海域,一艘海監(jiān)船在P處檢測(cè)到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時(shí)的速度去截獲不明船只,經(jīng)過(guò)1.5小時(shí),剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知、,B為y軸上的動(dòng)點(diǎn),以AB為邊構(gòu)造,使點(diǎn)C在x軸上,為BC的中點(diǎn),則PM的最小值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com