如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=-
8x
的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.
求:(1)一次函數(shù)的解析式;
(2)△AOB的面積.
(3)利用圖象指出,當(dāng)x為何值時(shí)有y1>y2
分析:(1)根據(jù)點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2,設(shè)A,B的坐標(biāo)分別為A(-2,y),B(x,-2),將兩坐標(biāo)分別代入解析式即可求出x、y的值,然后利用待定系數(shù)法求出直線(xiàn)AB的解析式.
(2)畫(huà)出圖形,將△AOB的面積轉(zhuǎn)化為△AOD,△BOD的面積和解答.
(3)利用圖形即可直接作出解答.
解答:解:(1)∵點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2,
∴設(shè)A,B的坐標(biāo)分別為A(-2,y),B(x,-2).
∵反比例函數(shù)y2=-
8
x
過(guò)點(diǎn)A和B,
y=-
8
-2
=4
,
∴A(-2,4)-2=-
8
x
x=4,
∴B(4,-2)…(2分),
∵直線(xiàn)AB的解析式為:y1=kx+b(k≠0),
∴有方程組:
4=-2k+b
-2=4k+b
,
解得:
k=-1
b=2
…(3分),
∴一次函數(shù)的解析式為:y1=-x+2…(5分),

(2)設(shè)直線(xiàn)AB交y軸于點(diǎn)D,則OD=2,
S△AOB=S△AOD+S△BOD=
1
2
×2×(2+4)=6
…(8分),

(3)當(dāng)x<-2或0<x<4時(shí),y1>y2…(10分).
點(diǎn)評(píng):本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,在解答(3)時(shí)要利用數(shù)形結(jié)合求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫(xiě)出,當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.求:
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出y1和y2的解析式;
(2)寫(xiě)出y1=y2時(shí),x的值;
(3)寫(xiě)出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過(guò)A、B兩點(diǎn),將點(diǎn)A向上平移1個(gè)單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點(diǎn)A、B,交x軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若點(diǎn)A的坐標(biāo)是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫(xiě)出當(dāng)反比例函數(shù)的值小于一次函數(shù)的值時(shí)x 的取值范圍?

查看答案和解析>>

同步練習(xí)冊(cè)答案