【題目】已知二次函數(shù)y=ax2﹣9ax+18a的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),圖象的頂點(diǎn)為C,直線AC交y軸于點(diǎn)D.
(1)連接BD,若∠BDO=∠CAB,求這個(gè)二次函數(shù)的表達(dá)式;
(2)是否存在以原點(diǎn)O為對(duì)稱軸的矩形CDEF?若存在,求出這個(gè)二次函數(shù)的表達(dá)式,若不存在,請(qǐng)說明理由.
【答案】(1) y=x2﹣6x+12或y=﹣x2+6x﹣12;
(2)存在,理由見解析.
【解析】
(1)先用含a的代數(shù)式表示出頂點(diǎn)坐標(biāo),作CM⊥x軸于M,則OM=,CM=|﹣a|.令y=0求出A、B兩點(diǎn)坐標(biāo).通過證明△ODA∽△OBD,可求出OD的長,由CM∥OD,求出CM的長,從而可求出a的值;
(2)連接OC,則OC=OD.由平行線的判定與性質(zhì)可證∠OCD=∠DCM.由∠AON的正弦值求得∠AON=30°,由正切函數(shù)求出CM的長,進(jìn)而可求出a的值.
解:(1)∵y=ax2﹣9ax+18a=a(x﹣)2﹣a,
∴頂點(diǎn)C(,﹣a).
作CM⊥x軸于M,則OM=,CM=|﹣a|.
當(dāng)y=0時(shí),ax2﹣9ax+18a=0,解得x1=3,x2=6,
∴A(3,0),B(6,0).
∵∠BDO=∠CAB,∠CAB=∠DAO,
∴∠DAO=∠BDO.
在△ODA與△OBD中,
,
∴△ODA∽△OBD,
∴=,即=,
∴OD=3.
∵CM∥OD,
∴=,即=,
∴CM=,
∴|﹣a|=,
∴a=±,
∴二次函數(shù)的解析式為y=x2﹣6x+12或y=﹣x2+6x﹣12;
(2)存在.連接OC,則OC=OD.
∴∠ODC=∠OCD.
∵CM∥OD,
∴∠ODC=∠DCM,
∴∠OCD=∠DCM.
作AN⊥OC于N,AN=AM=.
∵sin∠AON===,
∴∠AON=30°,
∴CM=OMtan30°=×=,
∴|﹣a|=,
∴a=±,
∴二次函數(shù)的解析式為y=x2﹣6x+12或y=﹣x2+6x﹣12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y =ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)P、Q分別是AB、BC上的動(dòng)點(diǎn),當(dāng)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)P、Q同時(shí)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2).
(1)求拋物線的表達(dá)式;
(2)設(shè)△PBQ的面積為S ,當(dāng)t為何值時(shí),△PBQ的面積最大,最大面積是多少?
(3)當(dāng)t為何值時(shí),△PBQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,CE和BD交于點(diǎn)O,AO的延長線交BC于點(diǎn)F,則圖中全等的三角形有( )
A.8對(duì)B.7對(duì)C.6對(duì)D.5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(3,0)、B(a,2)、C(0,m),D(n,0),且m2+n2=4,若E為CD中點(diǎn).則AB+BE的最小值為( 。
A. 3 B. 4 C. 5 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠CAB的角平分線AD交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠CAB=60°,DE=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時(shí)間,y 表示張強(qiáng)離家的距離。根據(jù)圖象提供的信息,以下四個(gè)說法錯(cuò)誤的是( )
A. 體育場離張強(qiáng)家2.5千米 B. 張強(qiáng)在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某酒廠每天生產(chǎn)A、B兩種品牌的白酒共1000瓶,A、B兩種品牌的白酒每瓶的成本和利潤如下表:
設(shè)每天生產(chǎn)A種品牌白酒x瓶,這兩種酒每天共獲利潤y元,
(1)求出y關(guān)于x的函數(shù)表達(dá)式;
(2)如果該酒廠每天對(duì)這兩種酒投入成本51000元,那么這兩種酒每天獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青島市某大酒店豪華間實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每間比淡季上漲,下表是去年該酒店豪華間某兩天的相關(guān)記錄:
旺季 | 淡季 | |
未入住房間數(shù) | 10 | 0 |
日總收入(元) | 24 000 | 40 000 |
(1)該酒店豪華間有多少間?旺季每間價(jià)格為多少元
(2)今年旺季來臨,豪華間的間數(shù)不變。經(jīng)市場調(diào)查發(fā)現(xiàn),如果豪華間仍舊實(shí)行去年旺季價(jià)格,那么每天都客滿;如果價(jià)格繼續(xù)上漲,那么每增加25元,每天未入住房間數(shù)增加1間。不考慮其他因素,該酒店將豪華間的價(jià)格上漲多少元時(shí),豪華間的日總收入最高?最高日總收入是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com