(2013•東城區(qū)二模)已知在Rt△ABC中,∠C=90°,∠A=α,AC=3,那么AB的長為(  )
分析:利用∠A的余弦值解答即可.
解答:解:∵cosA=
AC
AB
,∠A=α,AC=3,
∴AB=
AC
cosA
=
3
cosα
,
故選D.
點評:考查解直角三角形的知識;掌握和一個角的鄰邊與斜邊有關的三角函數(shù)值是余弦值的知識是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•東城區(qū)二模)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E.
(1)求證:AM=2CM;
(2)若∠1=∠2,CD=2
3
,求ME的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東城區(qū)二模)拋擲一枚質(zhì)地均勻的正方體骰子,骰子的六個面上分別刻有1到6的點數(shù),擲得朝上一面的點數(shù)為3的倍數(shù)的概率為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東城區(qū)二模)如圖,在平面直角坐標系中,已知⊙O的半徑為1,動直線AB與x軸交于點P(x,0),直線AB與x軸正方向夾角為45°,若直線AB與⊙O有公共點,則x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東城區(qū)二模)分解因式:mn2+4mn+4m=
m(n+2)2
m(n+2)2

查看答案和解析>>

同步練習冊答案