【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2兩個(gè)單位長的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
【1】設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式
【2】當(dāng)線段PQ與線段AB相交于點(diǎn)O,且2AO=OB時(shí),求t的值.
【3】當(dāng)t為何值時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?
【4】是否存在時(shí)刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,請說明理由.
【答案】
【1】s=×12×(16t)=966t
【2】由題意得 △AOP∽△BOQ ∴== ∴BQ=2AP
∴16t=2(2t21) ∴t=
【3】①若BQ=PQ 則 t2+122=(16t)2 得t=
②若BP=BQ 則(162t)2+122=(16t)2 得3t232t+144=0 ∵△=3224×3×144<0
∴3t232t+144=0無解 ∴BP≠BQ
③若BP=PQ 則 (162t)2+122= t2+122 ∴t=或t=16(不合題意舍去)
綜上所述當(dāng)t=或t=時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形
【4】存在時(shí)刻t,使得PQBD
過Q作QEAD,垂足為E,由PQBD可知△PQE∽△DBC
∴=
∴ = ∴t=9
所以,當(dāng)t=9時(shí),PQBD。
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,和均為等邊三角形,直線和直線交于點(diǎn).
填空:①的度數(shù)是 ;
②線段,之間的數(shù)量關(guān)系為 .
(2)類比探究
如圖2,和均為等腰直角三角形,,,,直線和直線交于點(diǎn).請判斷的度數(shù)及線段,之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖3,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)為軸上任意一點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,連接,請直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB、AC分別交于點(diǎn)D、E,DF⊥AC于點(diǎn)F.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的半徑為10,sinB=,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過Q作QE⊥AB于點(diǎn)E,過M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三張卡片(背面完全相同)分別寫有,,,把它們背面朝上洗勻后,小軍從中抽取一張,記下這個(gè)數(shù)后放回洗勻,小明又從中抽出一張.
兩人抽取的卡片上的數(shù)是的概率是________.
李剛為他們倆設(shè)定了一個(gè)游戲規(guī)則:若兩人抽取的卡片上兩數(shù)之積是有理數(shù),則小軍獲勝,否則小明獲勝,你認(rèn)為這個(gè)游戲規(guī)則對(duì)誰有利?請用列表法或樹狀圖進(jìn)行分析說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)和點(diǎn),給出如下定義:
若,則稱點(diǎn)為點(diǎn)的限變點(diǎn).
例如:點(diǎn)的限變點(diǎn)的坐標(biāo)為,點(diǎn)的限變點(diǎn)的坐標(biāo)是.
(1)①的限變點(diǎn)的坐標(biāo)是____________.
②若點(diǎn)在函數(shù)圖象上,其限變點(diǎn)在函數(shù)的圖象上,則函數(shù)的函數(shù)值隨的增大而增大時(shí)自變量的取值范圍是____________.
(2)若點(diǎn)在函數(shù)的圖象上,其限變點(diǎn)的縱坐標(biāo)的取值范圍是,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一種商品,進(jìn)價(jià)是每千克30元,根據(jù)市場調(diào)查發(fā)現(xiàn),每日的銷售量(千克)與售價(jià)(元/千克)滿足一次函數(shù)關(guān)系.下表記錄的是某兩日的有關(guān)數(shù)據(jù):
(元/千克) | 35 | 40 |
(千克) | 850 | 800 |
(1)求與的函數(shù)關(guān)系式(不求自變量的取值范圍);
(2)在銷售過程中銷售單價(jià)不低于成本價(jià),且不高于80元,某日該商場出售這種商品獲得了14000元的利潤,求該商品的售價(jià)?
(3)若某日該商場這種商品的銷售量不少于500千克,求這一天該商場銷售這種商品獲得的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測試,測試結(jié)果分為A、B、C、D四個(gè)等級(jí),請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)求本次測試共調(diào)查了多少名學(xué)生?
(2)求本次測試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)八年級(jí)共有900名學(xué)生,請你估計(jì)八年級(jí)學(xué)生中體能測試結(jié)果為D等級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,將線段繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn),再將其延長至點(diǎn),使得,得到線段;又將線段繞原點(diǎn)逆時(shí)針方向旋轉(zhuǎn),再將其延長至點(diǎn),使得,得到線段;如此下去,依次得到線段、、、…根據(jù)以上規(guī)律,線段的長度為__
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com