(2012•房山區(qū)二模)已知圓錐的底面半徑為3,母線長為4,則圓錐的側(cè)面積等于(  )
分析:首先求得圓錐的底面半徑,即展開圖中的扇形的弧長,根據(jù)扇形的面積公式,即可求解.
解答:解:圓錐的底面周長是6π.
則圓錐的側(cè)面積是:
1
2
×6π×4=12π.
故選D.
點評:本題主要考查了圓錐的計算,正確理解圓錐的側(cè)面積的計算可以轉(zhuǎn)化為扇形的面積的計算,理解圓錐與展開圖之間的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)如圖1,已知平行四邊形ABCD中,對角線AC,BD交于點O,E是BD延長線上的點,且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)如圖2,若∠AED=2∠EAD,AC=6.求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)若一個正多邊形的每個內(nèi)角都為135°,則這個正多邊形的邊數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)下列運算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)過正方體中有公共頂點的三條棱的中點切出一個平面,形成如圖幾何體,其正確展開圖為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)探究問題:
已知AD、BE分別為△ABC 的邊BC、AC上的中線,且AD、BE交于點O.
(1)△ABC為等邊三角形,如圖1,則AO:OD=
2:1
2:1
;
(2)當小明做完(1)問后繼續(xù)探究發(fā)現(xiàn),若△ABC為一般三角形(如圖2),(1)中的結(jié)論仍成立,請你給予證明.
(3)運用上述探究的結(jié)果,解決下列問題:
如圖3,在△ABC中,點E是邊AC的中點,AD平分∠BAC,AD⊥BE于點F,若AD=BE=4.求:△ABC的周長.

查看答案和解析>>

同步練習冊答案