如圖,已知:△ABC中,
(1)只用直尺(沒有刻度)和圓規(guī)求作一點P,使點P同時滿足下列兩個條件到三角形各邊的距離都相等(要求保留作圖痕跡,不必寫出作法).
①點P到∠CAB的兩邊距離相等:
②點P到A,B兩點的距離相等.
(2)若△ABC中,AC=AB=4,∠CAB=120°,那么請計算以△ABC為軸截面的圓錐的側(cè)面積(保留根號和π).

【答案】分析:(1)作一條線段等于已知線段;作一個角等于已知角;作角的平分線;作線段的垂直平分線
(2)根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側(cè)面積求出即可.
解答:解:(1)作∠A角平分線,線段AB的垂直平分線,其交點即為所求作的點P,


(2)過A作AD⊥BC于D
∵AC=AB=4,∠CAB=120°
∴由三角函數(shù)可得:cos30°===,
∴DC=
∴l(xiāng)=4,r=,
∴S=πrl=π.
點評:此題主要考查了角的平分線的作圖、線段的垂直平分線的作圖、圓錐側(cè)面積的計算,關(guān)鍵是利用圓錐的側(cè)面積=π×底面半徑×母線得出.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,∠B=90°,AB=6cm,BC=8cm,點P從點A開始,沿AB邊向點B以1cm/S的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,(其中一點到達終點,另一點也停止運動),設(shè)經(jīng)過t秒.
(1)如果P、Q分別從A、B兩點同時出發(fā),那么幾秒后,△PBQ的面積等于△ABC的面積的
13
?
(2)在(1)中,△PQB的面積能否等于10cm2?請說明理由.
(3)若P、Q分別從A、B兩點出發(fā),那么幾秒后,PQ的長度等于6cm?
(4)P、Q在移動的過程中,是否存在某一時刻t,使得PQ∥AC?若存在求出t的值,若不存在請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:△ABC中,∠1=∠2,且AE=AD,BE和CD相交于F.求證:BF=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:△ABC為等邊三角形,D、F分別為射線BC、射線AB邊上的點,BD=AF,以AD為邊作等邊△ADE.
(1)如圖①所示,當點D在線段BC上時:
①試說明:△ACD≌△CBF;②判斷四邊形CDEF的形狀,并說明理由;
(2)如圖②所示,當點D在BC的延長線上時,判斷四邊形CDEF的形狀,并說明理由.
(3)當點D在射線BC上移動到何處時,∠DEF=30°,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=36°,BD為∠ABC的平分線,則
AD
AC
的值等于
5
-1
2
5
-1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,D是邊BC的中點,點E在邊BA的延長線上,AE=AB,
BA
=
a
,
BC
=
b
,那么
DE
=
2
a
-
1
2
b
2
a
-
1
2
b

查看答案和解析>>

同步練習冊答案