【題目】若一元二次方程x22x-m=0有兩個(gè)不相同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(

A. m≥-1B. m≤1C. m-1D. m-1

【答案】C

【解析】

根據(jù)方程的系數(shù)結(jié)合根的判別式>0,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍

方程x2-2x-m=0有兩個(gè)不相同的實(shí)數(shù)根,

∴△=(-2) 2+4m>0,

解得:m-1

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是第二象限內(nèi)雙曲線y=上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、2a,線段AB的延長線交x軸于點(diǎn)C,若SAOC=6,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,20135月濟(jì)南市的房價(jià)均價(jià)為7600/m2,2015年同期達(dá)到8200/m2,假設(shè)這兩年濟(jì)南市房價(jià)的平均增長率為x,根據(jù)題意,所列方程為( 。

A. 76001+x%28200B. 76001x%28200

C. 76001+x28200D. 76001x28200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,∠A:B1:2,則∠C的度數(shù)為(.

A. 30° B. 45° C. 60° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在中俄“海上聯(lián)合—2014”反潛演習(xí)中,我軍艦A測(cè)得潛艇C的俯角為300.位于軍艦A正上方1000米的反潛直升機(jī)B側(cè)得潛艇C的俯角為680,試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度。(結(jié)果保留整數(shù)。參考數(shù)據(jù):sin680≈0.9,cos680≈0.4,,tan680≈2.5. ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.

(1)求證:∠1+∠2=90°;
(2)若∠ABD的平分線與CD的延長線交于F,且∠F=55°,求∠ABC;

(3)若H是BC上一動(dòng)點(diǎn),F(xiàn)是BA延長線上一點(diǎn),F(xiàn)H交BD于M,F(xiàn)G平分∠BFH,交DE于N,交BC于G.當(dāng)H在BC上運(yùn)動(dòng)時(shí)(不與B點(diǎn)重合), 的值是否變化?如果變化,說明理由;如果不變,試求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式x﹣2≤0的解集是( 。

A. x>2 B. x<2 C. x≥2 D. x≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)等式和不等式的性質(zhì),可以得到:若a﹣b>0,則a>b;若a﹣b=0,則a=b;若a﹣b<0,則a<b.這是利用“作差法”比較兩個(gè)數(shù)或兩個(gè)代數(shù)式值的大。
(1)試比較代數(shù)式5m2﹣4m+2與4m2﹣4m﹣7的值之間的大小關(guān)系;
解:(5m2﹣4m+2)﹣(4m2﹣4m﹣7)=5m2﹣4m+2﹣4m2+4m+7=m2+9,因?yàn)閙2≥0
所以m2+9>0
所以5m2﹣4m+24m2﹣4m﹣7.(用“>”或“<”填空)
(2)已知A=5m2﹣4( m﹣ ),B=7(m2﹣m)+3,請(qǐng)你運(yùn)用前面介紹的方法比較代數(shù)式A與B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,E為AB上一點(diǎn),∠BED=2∠BAD.

(1)求證:AD平分∠CDE;
(2)若AC⊥AD,∠ACD+∠AED=165°,求∠ACD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案